Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(22): eadd8693, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267370

RESUMO

Multiple sclerosis (MS) is an autoimmune disease characterized by autoreactive immune cells damaging myelinated nerves, impairing brain function. Treatments aim for tolerance induction to reeducate the immune system to recognize myelin as "self" rather than "foreign." As peripheral immune tolerance is primarily mediated by regulatory T cells (Tregs), we developed a therapy to support Treg expansion and activity in vivo. To target, engage, and activate myelin-specific Tregs, we designed a biodegradable microparticle (MP) loaded with rapamycin and functionalized with a biased interleukin-2 (IL-2) fusion protein and a major histocompatibility complex (MHC) class II loaded with a myelin peptide. These tolerogenic MPs (Tol-MPs) were validated in vitro and then evaluated in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Tol-MPs promoted sustained disease reversal in 100% of mice and full recovery in 38% of mice with symptomatic EAE. Tol-MPs are a promising platform for treatment of autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Linfócitos T Reguladores , Glicoproteína Mielina-Oligodendrócito , Bainha de Mielina , Encefalomielite Autoimune Experimental/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Camundongos Endogâmicos C57BL
2.
ACS Biomater Sci Eng ; 9(6): 3522-3534, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37233985

RESUMO

Type 1 diabetes (T1D) is a life-threatening condition for which islet transplantation offers a way to extend longevity and vastly improve quality of life, but the degree and duration of success can vary greatly due to the patient's protective immunity against foreign material. The field is in need of cellular engineering modalities to promote a localized, tolerogenic environment to protect transplanted islet tissue. Artificial antigen-presenting cells (aAPCs) can be designed exogenously to mimic immune cells, such as dendritic cells, and administered to patients, allowing greater control over T cell differentiation. As regulatory T cell (Treg) modulation can reduce the activity of cytotoxic T-effector populations, this strategy can be used to promote immune acceptance of both biomaterials and cellular transplants, such as islets. A new class of poly(lactic-co-glycolic acid) (PLGA) and PLGA/PBAE-blend aAPCs containing transforming growth factor beta and conjugated with anti-CD3 and anti-CD28 antibodies, called tolerogenic aAPCs (TolAPCs), are specifically designed to generate a tolerogenic response by inducing Tregs. We characterized TolAPCs' physical and chemical properties via advanced particle imaging and sizing modalities and investigated their impact on the local and systemic immune system across BALB/c and C57BL/6 mouse strains as well as healthy male and female mice via histologic, gene expression, and immunofluorescence staining methods. Strain-specific differences were observed, whereas sex made no difference in the TolAPC response. TolAPCs stimulated the expansion of FOXP3+ Tregs and provided islet cell protection, maintaining improved glucose-stimulated insulin secretion in vitro when co-cultured with cytotoxic CD8+ T cells. We also explored the ability of this TolAPC platform to promote tolerance in a streptozotocin-induced murine T1D C57BL/6 mouse model. We achieved partial islet protection over the first few days following co-injection with PLGA/PBAE TolAPCs; however, grafts failed soon thereafter. Analysis of the local injection site demonstrated that other immune cell types, including APCs and cytotoxic natural killer cells, increased in the islet injection site. While we aimed to promote a localized tolerogenic microenvironment in vivo using biodegradable TolAPCs to induce Tregs and extend islet transplant durability, further TolAPC improvements will be required to both elongate efficacy and control additional immune cell responders.


Assuntos
Ilhotas Pancreáticas , Linfócitos T Reguladores , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/cirurgia , Transplante de Pâncreas , Linfócitos T Reguladores/imunologia , Masculino , Animais , Camundongos , Feminino , Diabetes Mellitus Tipo 1/imunologia , Fatores Imunológicos/química , Fatores Imunológicos/uso terapêutico , Tamanho da Partícula
3.
Acta Biomater ; 160: 187-197, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36812956

RESUMO

Artificial antigen presenting cells are biomimetic particles that recapitulate the signals presented by natural antigen presenting cells in order to stimulate T cells in an antigen-specific manner using an acellular platform. We have engineered an enhanced nanoscale biodegradable artificial antigen presenting cell by modulating particle shape to achieve a nanoparticle geometry that allows for increased radius of curvature and surface area for T cell contact. The non-spherical nanoparticle artificial antigen presenting cells developed here have reduced nonspecific uptake and improved circulation time compared both to spherical nanoparticles and to traditional microparticle technologies. Additionally, the anisotropic nanoparticle artificial antigen presenting cells efficiently engage with and activate T cells, ultimately leading to a marked anti-tumor effect in a mouse melanoma model that their spherical counterparts were unable to achieve. STATEMENT OF SIGNIFICANCE: Artificial antigen presenting cells (aAPC) can activate antigen-specific CD8+ T cells but have largely been limited to microparticle-based platforms and ex vivo T cell expansion. Although more amenable to in vivo use, nanoscale aAPC have traditionally been ineffective due to limited surface area available for T cell interaction. In this work, we engineered non-spherical biodegradable nanoscale aAPC to investigate the role of particle geometry and develop a translatable platform for T cell activation. The non-spherical aAPC developed here have increased surface area and a flatter surface for T cell engagement and, therefore, can more effectively stimulate antigen-specific T cells, resulting in anti-tumor efficacy in a mouse melanoma model.


Assuntos
Melanoma , Nanopartículas , Animais , Camundongos , Células Apresentadoras de Antígenos , Ativação Linfocitária , Imunoterapia/métodos , Melanoma/patologia , Antígenos
4.
ACS Appl Mater Interfaces ; 13(7): 7913-7923, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33573372

RESUMO

Biomimetic biomaterials are being actively explored in the context of cancer immunotherapy because of their ability to directly engage the immune system to generate antitumor responses. Unlike cellular therapies, biomaterial-based immunotherapies can be precisely engineered to exhibit defined characteristics including biodegradability, physical size, and tuned surface presentation of immunomodulatory signals. In particular, modulating the interface between the biomaterial surface and the target biological cell is key to enabling biological functions. Synthetic artificial antigen presenting cells (aAPCs) are promising as a cancer immunotherapy but are limited in clinical translation by the requirement of ex vivo cell manipulation and adoptive transfer of antigen-specific CD8+ T cells. To move toward acellular aAPC technology for in vivo use, we combine poly(lactic-co-glycolic acid) (PLGA) and cationic poly(beta-amino-ester) (PBAE) to form a biodegradable blend based on the hypothesis that therapeutic aAPCs fabricated from a cationic blend may have improved functions. PLGA/PBAE aAPCs demonstrate enhanced surface interactions with antigen-specific CD8+ T cells that increase T cell activation and expansion ex vivo, associated with significantly increased conjugation efficiency of T cell stimulatory signals to the aAPCs. Critically, these PLGA/PBAE aAPCs also expand antigen-specific cytotoxic CD8+ T cells in vivo without the need of adoptive transfer. Treatment with PLGA/PBAE aAPCs in combination with checkpoint therapy decreases tumor growth and extends survival in a B16-F10 melanoma mouse model. These results demonstrate the potential of PLGA/PBAE aAPCs as a biocompatible, directly injectable acellular therapy for cancer immunotherapy.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Artificiais/imunologia , Imunoterapia , Melanoma/terapia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/imunologia , Polímeros/química , Animais , Células Artificiais/química , Linfócitos T CD8-Positivos/imunologia , Cátions/química , Cátions/imunologia , Melanoma/imunologia , Camundongos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Propriedades de Superfície
5.
Expert Opin Drug Deliv ; 17(10): 1395-1410, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32700581

RESUMO

INTRODUCTION: Gene delivery technologies are being developed for an increasing number of biomedical applications, with delivery vehicles including viruses and non-viral materials. Among biomaterials used for non-viral gene delivery, poly(beta-amino ester)s (PBAEs), a class of synthetic, biodegradable polymers, have risen as a leading gene delivery vehicle that has been used for multiple applications in vitro and in vivo. AREAS COVERED: This review summarizes the key properties of PBAEs and their development, including a discussion of the advantages and disadvantages of PBAEs for gene delivery applications. The use of PBAEs to improve the properties of other drug delivery vehicles is also summarized. EXPERT OPINION: PBAEs are designed to have multiple characteristics that are ideal for gene delivery, including their reversible positive charge, which promotes binding to nucleic acids as well as imparting high buffering capacity, and their rapid degradability under mild conditions. Simultaneously, some of their properties also lead to nanoparticle instability and low transfection efficiency in physiological environments. The ease with which PBAEs can be chemically modified as well as non-covalently blended with other materials, however, allows them to be customized specifically to overcome delivery barriers for varied applications.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Polímeros/química , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas/química , Transfecção
6.
Acta Biomater ; 112: 136-148, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32522714

RESUMO

Regulatory T cell (Treg)-based therapeutics are receiving increased attention for their potential to treat autoimmune disease and prevent transplant rejection. Adoptively transferred Tregs have shown promise in early clinical trials, but cell-based therapies are expensive and complex to implement, and "off-the-shelf" alternatives are needed. Here, we investigate the potential of artificial antigen presenting cells (aAPCs) fabricated from a blend of negatively charged biodegradable polymer (poly(lactic-co-glycolic acid), PLGA) and cationic biodegradable polymer (poly(beta-amino ester), PBAE) with incorporation of extracellular protein signals 1 and 2 and a soluble released signal 3 to convert naïve T cells to induced Foxp3+ Treg-like suppressor cells (iTregs) both in vitro and in vivo in a biomimetic manner. The addition of PBAE to the aAPC core increased the conjugation efficiency of signal proteins to the particle surface and resulted in enhanced ability to bind to naïve T cells and induce iTregs with potent suppressive function. Furthermore, PLGA/PBAE tolerogenic aAPCs (TolAPCs) supported the loading and sustained release of signal 3 cytokine TGF-ß. A single dose of TolAPCs administered intravenously to C57BL/6 J mice resulted in an increased percentage of Foxp3+ cells in the lymph nodes. Thus, PLGA/PBAE TolAPCs show potential as an "off-the-shelf" biomimetic material for tolerance induction. STATEMENT OF SIGNIFICANCE: Regulatory T cells (Tregs) are promising for basic research and translational medicine as they can induce tolerance and have the potential to treat autoimmune diseases such as type 1 diabetes and multiple sclerosis. As cell-based therapies are expensive and difficult to manufacture and implement, non-cellular methods of engineering endogenous Tregs are needed. The research reported here describes a new type of biomimetic particle, tolerogenic artificial antigen presenting cells (TolAPCs) fabricated from a blend of negatively charged biodegradable polymer, poly(lactic-co-glycolic acid), and positively charged biodegradable polymer, poly(beta-amino ester), along with key biomolecular signals: extracellularly presented protein signals 1 and 2 and a soluble released signal 3. These TolAPCs bind to naïve T cells and induce Foxp3+ Treg-like suppressor cells with potent suppressive function. In both in vitro and in vivo studies, it is shown that this non-cellular approach is useful to induce tolerance.


Assuntos
Biomimética , Linfócitos T Reguladores , Animais , Células Apresentadoras de Antígenos , Linfócitos T CD8-Positivos , Camundongos , Camundongos Endogâmicos C57BL
7.
Proc Natl Acad Sci U S A ; 117(8): 4043-4052, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32034097

RESUMO

Cancer immunotherapy has been the subject of extensive research, but highly effective and broadly applicable methods remain elusive. Moreover, a general approach to engender endogenous patient-specific cellular therapy, without the need for a priori knowledge of tumor antigen, ex vivo cellular manipulation, or cellular manufacture, could dramatically reduce costs and broaden accessibility. Here, we describe a biotechnology based on synthetic, biodegradable nanoparticles that can genetically reprogram cancer cells and their microenvironment in situ so that the cancer cells can act as tumor-associated antigen-presenting cells (tAPCs) by inducing coexpression of a costimulatory molecule (4-1BBL) and immunostimulatory cytokine (IL-12). In B16-F10 melanoma and MC38 colorectal carcinoma mouse models, reprogramming nanoparticles in combination with checkpoint blockade significantly reduced tumor growth over time and, in some cases, cleared the tumor, leading to long-term survivors that were then resistant to the formation of new tumors upon rechallenge at a distant site. In vitro and in vivo analyses confirmed that locally delivered tAPC-reprogramming nanoparticles led to a significant cell-mediated cytotoxic immune response with systemic effects. The systemic tumor-specific and cell-mediated immunotherapy response was achieved without requiring a priori knowledge of tumor-expressed antigens and reflects the translational potential of this nanomedicine.


Assuntos
Engenharia Genética/métodos , Fatores Imunológicos/uso terapêutico , Melanoma Experimental/genética , Melanoma Experimental/terapia , Animais , Antígenos de Neoplasias , Antineoplásicos/uso terapêutico , Feminino , Genes Reporter , Humanos , Imunoterapia/métodos , Células Matadoras Naturais , Camundongos , Camundongos Endogâmicos C57BL , Nanomedicina , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Linfócitos T
8.
Biomater Sci ; 7(1): 14-30, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30418444

RESUMO

New advances in biomaterial-based approaches to modulate the immune system are being applied to treat cancer, infectious diseases, and autoimmunity. Particulate systems are especially well-suited to deliver immunomodulatory factors to immune cells since their small size allows them to engage cell surface receptors or deliver cargo intracellularly after internalization. Biodegradable polymeric particles are a particularly versatile platform for the delivery of signals to the immune system because they can be easily surface-modified to target specific receptors and engineered to release encapsulated cargo in a precise, sustained manner. Micro- and nanoscale systems have been used to deliver a variety of therapeutic agents including monoclonal antibodies, peptides, and small molecule drugs that function to activate the immune system against cancer or infectious disease, or suppress the immune system to combat autoimmune diseases and transplant rejection. This review provides an overview of recent advances in the development of polymeric micro- and nanoparticulate systems for the presentation and delivery of immunomodulatory agents targeted to a variety of immune cell types including APCs, T cells, B cells, and NK cells.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Fatores Imunológicos/administração & dosagem , Nanopartículas/química , Polímeros/química , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Imunomodulação/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
9.
J Vis Exp ; (140)2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30371668

RESUMO

Artificial antigen presenting cells (aAPC) are a promising platform for immune modulation due to their potent ability to stimulate T cells. Acellular substrates offer key advantages over cell-based aAPC, including precise control of signal presentation parameters and physical properties of the aAPC surface to modulate its interactions with T cells. aAPC constructed from anisotropic particles, particularly ellipsoidal particles, have been shown to be more effective than their spherical counterparts at stimulating T cells due to increased binding and larger surface area available for T cell contact, as well as reduced nonspecific uptake and enhanced pharmacokinetic properties. Despite increased interest in anisotropic particles, even widely accepted methods of generating anisotropic particles such as thin-film stretching can be challenging to implement and use reproducibly. To this end, we describe a protocol for the rapid, standardized fabrication of biodegradable anisotropic particle-based aAPC with tunable size, shape, and signal presentation for T cell expansion ex vivo or in vivo, along with methods to characterize their size, morphology, and surface protein content, and to assess their functionality. This approach to fabricating anisotropic aAPC is scalable and reproducible, making it ideal for generating aAPC for "off-the-shelf" immunotherapies.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária/imunologia , Anisotropia , Humanos
10.
Mol Immunol ; 98: 13-18, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29525074

RESUMO

Exciting developments in cancer nanomedicine include the engineering of nanocarriers to deliver drugs locally to tumors, increasing efficacy and reducing off-target toxicity associated with chemotherapies. Despite nanocarrier advances, metastatic cancer remains challenging to treat due to barriers that prevent nanoparticles from gaining access to remote, dispersed, and poorly vascularized metastatic tumors. Instead of relying on nanoparticles to directly destroy every tumor cell, immunotherapeutic approaches target immune cells to train them to recognize and destroy tumor cells, which, due to the amplification and specificity of an adaptive immune response, may be a more effective approach to treating metastatic cancer. One novel technology for cancer immunotherapy is the artificial antigen presenting cell (aAPC), a micro- or nanoparticle-based system that mimics an antigen presenting cell by presenting important signal proteins to T cells to activate them against cancer. Signal 1 molecules target the T cell receptor and facilitate antigen recognition by T cells, signal 2 molecules provide costimulation essential for T cell activation, and signal 3 consists of secreted cues that further stimulate T cells. Classic microscale aAPCs present signal 1 and 2 molecules on their surface, and biodegradable polymeric aAPCs offer the additional capability of releasing signal 3 cytokines and costimulatory molecules that modulate the T cell response. Although particles of approximately 5-10 µm in diameter may be considered the optimal size of an aAPC for ex vivo cellular expansion, nanoscale aAPCs have demonstrated superior in vivo pharmacokinetic properties and are more suitable for systemic injection. As sufficient surface contact between T cells and aAPCs is essential for activation, nano-aAPCs with microscale contact surface areas have been created through engineering approaches such as shape manipulation and nanoparticle clustering. These design strategies have demonstrated greatly enhanced efficacy of nano-aAPCs, endowing nano-aAPCs with the potential to be among the next generation of cancer nanomedicines.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Artificiais/imunologia , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Animais , Biomimética , Humanos , Nanopartículas de Magnetita/química , Camundongos , Nanomedicina , Nanopartículas/ultraestrutura , Nanotecnologia , Tamanho da Partícula
11.
Nano Lett ; 17(2): 652-659, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28094959

RESUMO

Targeted, noninvasive neuromodulation of the brain of an otherwise awake subject could revolutionize both basic and clinical neuroscience. Toward this goal, we have developed nanoparticles that allow noninvasive uncaging of a neuromodulatory drug, in this case the small molecule anesthetic propofol, upon the application of focused ultrasound. These nanoparticles are composed of biodegradable and biocompatible constituents and are activated using sonication parameters that are readily achievable by current clinical transcranial focused ultrasound systems. These particles are potent enough that their activation can silence seizures in an acute rat seizure model. Notably, there is no evidence of brain parenchymal damage or blood-brain barrier opening with their use. Further development of these particles promises noninvasive, focal, and image-guided clinical neuromodulation along a variety of pharmacological axes.


Assuntos
Encéfalo/efeitos dos fármacos , Emulsões/química , Nanopartículas/química , Neurotransmissores/administração & dosagem , Anestésicos/administração & dosagem , Anestésicos/química , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Portadores de Fármacos , Liberação Controlada de Fármacos , Fluorocarbonos/química , Imageamento por Ressonância Magnética , Neurotransmissores/química , Imagem Óptica , Propofol/administração & dosagem , Propofol/química , Ratos , Convulsões/tratamento farmacológico , Distribuição Tecidual , Ondas Ultrassônicas
12.
ACS Biomater Sci Eng ; 2(10): 1817-1826, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33440479

RESUMO

Preeclampsia (PE) is a leading cause of maternal and perinatal morbidity and mortality. Current research suggests that the impaired trophoblastic invasion of maternal spiral arteries contributes significantly to the development of PE. However, the pathobiology of PE remains poorly understood, and there is a lack of treatment options largely due to ineffective experimental models. Utilizing the capability of bioprinting and shear wave elastography, we developed a 3D, bioengineered placenta model (BPM) to study and quantify cell migration. Through BPM, we evaluated the effect of epidermal growth factor (EGF) on the migratory behavior of trophoblast and human mesenchymal stem cells. Our results demonstrate a positive correlation between cell migration rates and EGF concentration. These results indicate that a feasible ex vivo placental model can be bioprinted to examine cellular, molecular, and pharmacologic interactions. In addition, EGF clearly affects the celluar migration, a potential therapeutic agent to treat preeclampsia. We envision that our ex vivo tissue modeling approach can be readily transferred to study other normal biologic and abnormal pathologic processes such as fibroblast migration in wound healing and stem cell homing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...