Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Emerg Top Life Sci ; 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36541191

RESUMO

This special issue of Emerging Topics in Life Sciences presents a selection of reviews that give insight into the vast array of research taking place in the fields of soft matter and biophysics, and where these two intersect. The reviews here cover the full range from the fundamentals of how biological systems may have assembled to how we can use this insight to develop and exploit new biomaterials for the future, all informed through the lens of the physical sciences. This issue has been both written and edited by early career researchers, highlighting the cutting-edge contributions that this generation of researchers is bringing to the field.

2.
Nanoscale ; 14(14): 5392-5403, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35319029

RESUMO

Surfactants are used in a wide range of chemical and biological applications, and for pharmaceutical purposes are frequently employed to enhance the solubility of poorly water soluble drugs. In this study, all-atom molecular dynamics (MD) simulations and small-angle neutron scattering (SANS) experiments have been used to investigate the drug solubilisation capabilities of the micelles that result from 10 wt% aqueous solutions of the non-ionic surfactant, Triton X-100 (TX-100). Specifically, we have investigated the solubilisation of saturation amounts of the sodium salts of two nonsteroidal anti-inflammatory drugs: ibuprofen and indomethacin. We find that the ibuprofen-loaded micelles are more non-spherical than the indomethacin-loaded micelles which are in turn even more non-spherical than the TX-100 micelles that form in the absence of any drug. Our simulations show that the TX-100 micelles are able to solubilise twice as many indomethacin molecules as ibuprofen molecules, and the indomethacin molecules form larger aggregates in the core of the micelle than ibuprofen. These large indomethacin aggregates result in the destabilisation of the TX-100 micelle, which leads to an increase in the amount of water inside of the core of the micelle. These combined effects cause the eventual division of the indomethacin-loaded micelle into two daughter micelles. These results provide a mechanistic description of how drug interactions can affect the stability of the resulting nanoparticles.


Assuntos
Ibuprofeno , Micelas , Ibuprofeno/química , Indometacina , Octoxinol , Tensoativos/química , Água/química
4.
J Chem Phys ; 150(11): 115104, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30902020

RESUMO

The atomic-scale hydration structure around the 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) headgroup in a chloroform/water solution has been investigated using neutron diffraction enhanced by isotopic substitution and NMR, coupled with empirical potential structure refinement and molecular dynamics simulations. The results obtained show the preferential binding sites for water molecules on the DOPE headgroups, with the most predominant interactions being with the ammonium and phosphate groups. Interestingly, the level of hydration, as well as the association of DOPE molecules, varies according to the simulation method used. The results here suggest the presence of a tight water network around these lipid headgroups that could affect the permeability of the membrane for lipid-mediated diffusion.

5.
ACS Omega ; 4(27): 22392-22398, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31909321

RESUMO

Natural sugars combine energy supply and, except a few cases, a pleasant taste. On the other hand, exaggerated consumption may impact population health. This has busted the research for the synthesis of increasingly cheaper artificial sweeteners, with low energy content and intense taste. Here, we suggest that studies of the hydration properties of three disaccharides, namely, the natural sucrose and lactose and the artificial sucralose, may explain the difference by orders of magnitude among their sweetness. This is done by analyzing via Monte Carlo simulations the neutron diffraction differential cross sections of aqueous solutions of the three sugars and their isotopes. Our results show that the strength of the sugar-water hydrogen bond interaction is one of the factors influencing sweetness, another being the number of water molecules within the first neighboring shell of the sugar whether bonded or not.

6.
J Phys Chem B ; 122(29): 7365-7374, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29965765

RESUMO

Trehalose, commonly found in living organisms, is believed to help them survive severe environmental conditions, such as drought or extreme temperatures. With the aim of trying to understand these properties, two recent neutron scattering studies investigate the structure of trehalose water solutions but come to seemingly opposite conclusions. In the first study, which looks at two concentrations of trehalose-water mole ratios of 1:100 and 1:25, the conclusion is that trehalose hydrogen-bonds to water rather weakly and has a relatively minor impact on the structure of water in solution compared to bulk water. On the other hand, for the other, using a mole ratio of 1:38, the conclusion is that the water structure is rather substantially modified by the presence of trehalose and that the hydrogen bonding between water and trehalose hydroxyl groups is significant. In an attempt to try to understand the origin of these divergent views, which arise from similar but independent analyses of different neutron diffraction data, we have performed additional X-ray scattering experiments, which are highly sensitive to water structure, at the same trehalose-water concentrations used in the first study, and combined these with empirical potential structure refinement on the previously collected neutron data. The new analysis unequivocally confirms that trehalose does indeed have only a minor impact on the structure of water, at all three concentrations, and forms relatively weak hydrogen bonds with water. Far from being discrepant with the existing literature, our new analysis of the different datasets suggests a natural explanation for the increased glass-transition temperature of trehalose compared to other sugars and hence its enhanced effectiveness as a protectant against drought stress.


Assuntos
Trealose/química , Água/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligação de Hidrogênio , Difração de Nêutrons , Difração de Raios X
7.
J Phys Chem B ; 122(32): 7884-7894, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30039970

RESUMO

Previous neutron scattering work, combined with computer simulated structure analysis, has established that binary mixtures of methanol and water partially segregate into water-rich and alcohol-rich components. It has furthermore been noted that, between methanol mole fractions of 0.27 and 0.54, both components, water and methanol, simultaneously form percolating clusters. This partial segregation is enhanced with decreasing temperature. The mole fraction of 0.27 also corresponds to the point of maximum excess entropy for ethanol-water mixtures. Here, we study the degree of molecular segregation in aqueous ethanol solutions at a mole fraction of 0.27 and compare it with that in methanol-water solutions at the same concentration. Structural information is extracted for these solutions using neutron diffraction coupled with empirical potential structure refinement. We show that ethanol, like methanol, bi-percolates at this concentration and that, in a similar manner to methanol, alcohol segregation, as measured by the proximity of neighboring methyl sidechains, is increased upon cooling the solution. Water clustering is found to be significantly enhanced in both alcohol solutions compared to the water clustering that occurs for random, hard sphere-like, mixing with no hydrogen bonds between molecules. Alcohol clustering via the hydrophobic groups is, on the other hand, only slightly sensitive to the water hydrogen bond network. These results support the idea that it is the water clustering that drives the partial segregation of the two components, and hence the observed excess entropy of mixing.

8.
J Chem Phys ; 148(13): 135102, 2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29626902

RESUMO

The atomic-scale structure of the phosphocholine (PC) headgroup in 30 mol. % propylene glycol (PG) in an aqueous solution has been investigated using a combination of neutron diffraction with isotopic substitution experiments and computer simulation techniques-molecular dynamics and empirical potential structure refinement. Here, the hydration of the PC headgroup remains largely intact compared with the hydration of this group in a bilayer and in a bulk water solution, with the PG molecules showing limited interactions with the headgroup. When direct PG interactions with PC do occur, they are most likely to coordinate to the N(CH3)3+ motifs. Further, PG does not affect the bulk water structure and the addition of PC does not perturb the PG-solvent interactions. This suggests that the reason why PG is able to penetrate into membranes easily is that it does not form strong-hydrogen bonding or electrostatic interactions with the headgroup allowing it to easily move across the membrane barrier.


Assuntos
Fosforilcolina/química , Propilenoglicol/química , Solventes/química , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Fosfatidilcolinas/química , Água/química
9.
Nat Commun ; 8(1): 919, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29030555

RESUMO

The discovery by the Phoenix Lander of calcium and magnesium perchlorates in Martian soil samples has fueled much speculation that flows of perchlorate brines might be the cause of the observed channeling and weathering in the surface. Here, we study the structure of a mimetic of Martian water, magnesium perchlorate aqueous solution at its eutectic composition, using neutron diffraction in combination with hydrogen isotope labeling and empirical potential structure refinement. We find that the tetrahedral structure of water is heavily perturbed, the effect being equivalent to pressurizing pure water to pressures of order 2 GPa or more. The Mg2+ and ClO4- ions appear charge-ordered, confining the water on length scales of order 9 Å, preventing ice formation at low temperature. This may explain the low evaporation rates and high deliquescence of these salt solutions, which are essential for stability within the low relative humidity environment of the Martian atmosphere.Significant amounts of different perchlorate salts have been discovered on the surface of Mars. Here, the authors show that magnesium perchlorate has a major impact on water structure in solution, providing insight into how an aqueous fluid might exist under the sub-freezing conditions present on Mars.

10.
J Chem Phys ; 145(22): 224504, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27984895

RESUMO

Using a combination of neutron diffraction and empirical potential structure refinement computational modelling, the interactions in a 30 mol. % aqueous solution of propylene glycol (PG), which govern both the hydration and association of this molecule in solution, have been assessed. From this work it appears that PG is readily hydrated, where the most prevalent hydration interactions were found to be through both the PG hydroxyl groups but also alkyl groups typically considered hydrophobic. Hydration interactions of PG dominate the solution over PG self-self interactions and there is no evidence of more extensive association. This hydration behavior for PG in solutions suggests that the preference of PG to be hydrated rather than to be self-associated may translate into a preference for PG to bind to lipids rather than itself, providing a potential explanation for how PG is able to enhance the apparent solubility of drug molecules in vivo.


Assuntos
Propilenoglicol/química , Água/química , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Estrutura Molecular , Difração de Nêutrons , Soluções/química
11.
Phys Chem Chem Phys ; 18(27): 18054-62, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27327567

RESUMO

Halophilic organisms have adapted to survive in high salt environments, where mesophilic organisms would perish. One of the biggest challenges faced by halophilic proteins is the ability to maintain both the structure and function at molar concentrations of salt. A distinct adaptation of halophilic proteins, compared to mesophilic homologues, is the abundance of aspartic acid on the protein surface. Mutagenesis and crystallographic studies of halophilic proteins suggest an important role for solvent interactions with the surface aspartic acid residues. This interaction, between the regions of the acidic protein surface and the solvent, is thought to maintain a hydration layer around the protein at molar salt concentrations thereby allowing halophilic proteins to retain their functional state. Here we present neutron diffraction data of the monomeric zwitterionic form of aspartic acid solutions at physiological pH in 0.25 M and 2.5 M concentration of potassium chloride, to mimic mesophilic and halophilic-like environmental conditions. We have used isotopic substitution in combination with empirical potential structure refinement to extract atomic-scale information from the data. Our study provides structural insights that support the hypothesis that carboxyl groups on acidic residues bind water more tightly under high salt conditions, in support of the residue-ion interaction model of halophilic protein stabilisation. Furthermore our data show that in the presence of high salt the self-association between the zwitterionic form of aspartic acid molecules is reduced, suggesting a possible mechanism through which protein aggregation is prevented.


Assuntos
Ácido Aspártico/química , Cloreto de Potássio/química , Cloreto de Sódio/química , Solventes/química , Adaptação Fisiológica , Estabilidade Proteica
12.
J Phys Chem B ; 119(51): 15644-51, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26633573

RESUMO

Recent studies suggest that hydrophilic interactions play an important role in controlling self-assembly in biological processes. To explore the effect of temperature on this interaction, we extend our previous work on the glutamine-water system at 24 °C (at a mole ratio of 1 glutamine to 269 water molecules) and present additional neutron diffraction data, at the same concentration, at 37 and 60 °C, using hydrogen/deuterium substitution on the water and glutamine, coupled with further extensive empirical potential structure refinement computer simulations. Taking all the possible hydrophilic couplings between glutamine molecules into account, we find that nearly one-fifth of the glutamines in solution are linked by hydrogen bonds at any one time. This number contrasts strongly with the ∼3-4% fraction found in the same simulation with random packing and no hydrogen bonds. Within the uncertainties imposed by dilute solution statistics, we find no temperature dependence in these values. The clusters are highly transitory, forming and disappearing rapidly as the simulations proceed. Hydrophobic association of the alkyl groups on glutamine without concomitant hydrophilic association of the charged head and side-chain groups is only weakly observed.


Assuntos
Glutamina/química , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Soluções
13.
J Synchrotron Radiat ; 18(1): 79-83, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21169698

RESUMO

The low-resolution structure of α-crustacyanin has been determined to 30 Å resolution using negative-stain electron microscopy (EM) with single-particle averaging. The protein, which is an assembly of eight ß-crustacyanin dimers, appears asymmetrical and rather open in layout. A model was built to the EM map using the X-ray crystallographic structure of ß-crustacyanin guided by PISA interface analyses. The model has a theoretical sedimentation coefficient that matches well with the experimentally derived value from sedimentation velocity analytical ultracentrifugation. Additionally, the EM model has similarities to models calculated independently by rigid-body modelling to small-angle X-ray scattering (SAXS) data and extracted in silico from the ß-crustacyanin crystal lattice. Theoretical X-ray scattering from each of these models is in reasonable agreement with the experimental SAXS data and together suggest an overall design for the α-crustacyanin assembly.


Assuntos
Proteínas de Transporte/ultraestrutura , Animais , Cristalografia por Raios X/métodos , Microscopia Eletrônica , Espalhamento a Baixo Ângulo , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...