Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 10100, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980937

RESUMO

Cylindrical magnetic nanowires are key elements of fast-recording and high-density 3D-storage devices. The accurate tuning of the magnetization processes at the nanoscale is crucial for the development of future nano-devices. Here, we analyzed the magnetization of Ni nanostructures with 15-100 nm in diameter and 12-230 nm in length and compared our results with experimental data for periodic arrays. Our modelling led to a phase diagram of the reversal modes where the presence of a critical diameter (d ≈ 30 nm) triggered the type of domain wall (DW) formed (transverse or vortex); while a critical length (L ≈ 100 nm) determined the number of DWs nucleated. Moreover, vortex-DWs originated from 3D skyrmion tubes, reported as one of the best configurations for storage devices. By increasing the diameter and aspect-ratio of nanowires with L > 100 nm, three reversal modes were observed: simultaneous propagation of two vortex-DWs; propagation of one vortex-DW; or spiral rotation of both DWs through "corkscrew" mechanism. Only for very low aspect-ratios (nanodisks), no skyrmion tubes were observed and reversal occurred by spiral rotation of one vortex-DW. The broad range of nanostructures studied allowed the creation of a complete phase diagram, highly important for future choice of nanoscaled dimensions in the development of novel nano-devices.

2.
Nanomaterials (Basel) ; 10(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271869

RESUMO

A racetrack memory is a device where the information is stored as magnetic domains (bits) along a nanowire (track). To read and record the information, the bits are moved along the track by current pulses until they reach the reading/writing heads. In particular, 3D racetrack memory devices use arrays of vertically aligned wires (tracks), thus enhancing storage density. In this work, we propose a novel 3D racetrack memory configuration based on functional segments inside cylindrical nanowire arrays. The innovative idea is the integration of the writing element inside the racetrack itself, avoiding the need to implement external writing heads next to the track. The use of selective magnetic segments inside one nanowire allows the creation of writing and storage sections inside the same track, separated by chemical constraints identical to those separating the bits. Using micromagnetic simulations, our study reveals that if the writing section is composed of two segments with different coercivities, one can reverse its magnetization independently from the rest of the memory device by applying an external magnetic field. Spin-polarized current pulses then move the information bits along selected tracks, completing the writing process by pushing the new bit into the storage section of the wire. Finally, we have proven the efficacy of this system inside an array of 7 nanowires, opening the possibility to use this configuration in a 3D racetrack memory device composed of an array of thousands of nanowires produced by low-cost and high-yield template-electrodeposition methods.

3.
Methods Mol Biol ; 1964: 225-239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30929246

RESUMO

Standard molecular binding isothermal titration calorimetric (ITC) experiments are designed to get thermodynamic information: changes in Gibbs energy, enthalpy, and entropy associated to the studied process. Traditionally, the kinetic information contained in the ITC raw signal has been ignored. For a usual one-step process, this corresponds to the rate constants for the association and the dissociation of the complex (kon and koff). The availability of highly sensitive ITC instruments with low response time, together with the development of theoretical methods and of public software for the proper analysis of the signal, cancels any reason for not retrieving this kinetic information. Here we describe how to further exploit ITC experiments of simple one-step interactions by using the software AFFINImeter.The method is exemplified using a standard reference system for thermodynamic and kinetic molecular binding analysis: the interaction of carbonic anhydrase (CA) with its inhibitor 4-carboxybenzenesulfonamide (4-CBS) at several temperatures. It is to be emphasized that old experiments initially designed and executed just for thermodynamic analysis can be readily recycled by using AFFINImeter to retrieve the previously ignored kinetic information.


Assuntos
Calorimetria/métodos , Proteínas/química , Software , Termodinâmica , Entropia , Cinética , Ligação Proteica , Temperatura
4.
Anal Biochem ; 577: 117-134, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849378

RESUMO

The comprehension of molecular recognition phenomena demands the understanding of the energetic and kinetic processes involved. General equations valid for the thermodynamic analysis of any observable that is assessed as a function of the concentration of the involved compounds are described, together with their implementation in the AFFINImeter software. Here, a maximum of three different molecular species that can interact with each other to form an enormous variety of supramolecular complexes are considered. The corrections currently employed to take into account the effects of dilution, volume displacement, concentration errors and those due to external factors, especially in the case of ITC measurements, are included. The methods used to fit the model parameters to the experimental data, and to generate the uncertainties are described in detail. A simulation tool and the so called kinITC analysis to get kinetic information from calorimetric experiments are also presented. An example of how to take advantage of the AFFINImeter software for the global multi-temperature analysis of a system exhibiting cooperative 1:2 interactions is presented and the results are compared with data previously published. Some useful recommendations for the analysis of experiments aimed at studying molecular interactions are provided.


Assuntos
Calorimetria/métodos , Proteínas/química , Software , Fenômenos Biofísicos , Cinética , Ligação Proteica , Temperatura , Termodinâmica
5.
Sci Technol Adv Mater ; 19(1): 465-473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887921

RESUMO

Searching for high-performance permanent magnets components with no limitation in shape and dimensions is highly desired to overcome the present design and manufacturing restrictions, which affect the efficiency of the final devices in energy, automotive and aerospace sectors. Advanced 3D-printing of composite materials and related technologies is an incipient route to achieve functional structures avoiding the limitations of traditional manufacturing. Gas-atomized MnAlC particles combined with polymer have been used in this work for fabricating scalable rare earth-free permanent magnet composites and extruded flexible filaments with continuous length exceeding 10 m. Solution casting has been used to synthesize homogeneous composites with tuned particles content, made of a polyethylene (PE) matrix embedding quasi-spherical particles of the ferromagnetic τ-MnAlC phase. A maximum filling factor of 86.5 and 72.3% has been obtained for the composite and the filament after extrusion, respectively. The magnetic measurements reveal no deterioration of the properties of the MnAlC particles after the composite synthesis and filament extrusion. The produced MnAlC/PE materials will serve as precursors for an efficient and scalable design and fabrication of end-products by different processing techniques (polymerized cold-compacted magnets and 3D-printing, respectively) in view of technological applications (from micro electromechanical systems to energy and transport applications).

6.
Methods Enzymol ; 567: 157-80, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794354

RESUMO

Isothermal titration calorimetry (ITC) has long been used for kinetic studies in chemistry, but this remained confined to enzymatic studies in the biological field. In fact, the biological community has long had the tendency of ignoring the kinetic possibilities of ITC considering it solely as a thermodynamic technique, whereas surface plasmon resonance is seen as the kinetic technique par excellence. However, the primary signal recorded by ITC is a heat power which is directly related to the kinetics of the reaction. Here, it is shown how this kinetic signal can be recovered by using kinITC, the kinetic extension of ITC. The theoretical basis of kinITC is detailed for the most common situation of a second-order reaction A+B Ω C characterized by kinetic parameters kon, koff. A simplified kinITC-ETC method based upon the determination of an "Equilibration Time Curve" (ETC) is presented. The ETC is obtained by automatic determination of the "effective end" of each injection. The method is illustrated with experimental results with a comparison to Surface Plasmon Resonance (SPR) data. kon values were obtained in a wide range, from 10(3) to 0.5×10(6) M(-1) s(-1). All procedures were implemented in the program AFFINImeter (https://www.affinimeter.com/).


Assuntos
Calorimetria/métodos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...