Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38785610

RESUMO

We study epidemic spreading in complex networks by a multiple random walker approach. Each walker performs an independent simple Markovian random walk on a complex undirected (ergodic) random graph where we focus on the Barabási-Albert (BA), Erdös-Rényi (ER), and Watts-Strogatz (WS) types. Both walkers and nodes can be either susceptible (S) or infected and infectious (I), representing their state of health. Susceptible nodes may be infected by visits of infected walkers, and susceptible walkers may be infected by visiting infected nodes. No direct transmission of the disease among walkers (or among nodes) is possible. This model mimics a large class of diseases such as Dengue and Malaria with the transmission of the disease via vectors (mosquitoes). Infected walkers may die during the time span of their infection, introducing an additional compartment D of dead walkers. Contrary to the walkers, there is no mortality of infected nodes. Infected nodes always recover from their infection after a random finite time span. This assumption is based on the observation that infectious vectors (mosquitoes) are not ill and do not die from the infection. The infectious time spans of nodes and walkers, and the survival times of infected walkers, are represented by independent random variables. We derive stochastic evolution equations for the mean-field compartmental populations with the mortality of walkers and delayed transitions among the compartments. From linear stability analysis, we derive the basic reproduction numbers RM,R0 with and without mortality, respectively, and prove that RM1, the healthy state is unstable, whereas for zero mortality, a stable endemic equilibrium exists (independent of the initial conditions), which we obtained explicitly. We observed that the solutions of the random walk simulations in the considered networks agree well with the mean-field solutions for strongly connected graph topologies, whereas less well for weakly connected structures and for diseases with high mortality. Our model has applications beyond epidemic dynamics, for instance in the kinetics of chemical reactions, the propagation of contaminants, wood fires, and others.

2.
Phys Rev E ; 109(4-1): 044301, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755919

RESUMO

In this study, we present a general framework for comparing two dynamical processes that describe the synchronization of oscillators coupled through networks of the same size. We introduce a measure of dissimilarity defined in terms of a metric on a hypertorus, allowing us to compare the phases of coupled oscillators. In the first part, this formalism is implemented to examine systems of networked identical phase oscillators that evolve with the Kuramoto model. In particular, we analyze the effect of the weight of an edge in the synchronization of two oscillators, the introduction of new sets of edges in interacting cycles, the effect of bias in the couplings, and the addition of a link in a ring. We also compare the synchronization of nonisomorphic graphs with four nodes. Finally, we explore the dissimilarities generated when we contrast the Kuramoto model with its linear approximation for different random initial phases in deterministic and random networks. The approach introduced provides a general tool for comparing synchronization processes on networks, allowing us to understand the dynamics of a complex system as a consequence of the coupling structure and the processes that can occur in it.

3.
Phys Rev E ; 107(4-1): 044207, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37198844

RESUMO

We study an epidemic model for a constant population by taking into account four compartments of the individuals characterizing their states of health. Each individual is in one of the following compartments: susceptible S; incubated, i.e., infected yet not infectious, C; infected and infectious I; and recovered, i.e., immune, R. An infection is visible only when an individual is in state I. Upon infection, an individual performs the transition pathway S→C→I→R→S, remaining in compartments C, I, and R for a certain random waiting time t_{C}, t_{I}, and t_{R}, respectively. The waiting times for each compartment are independent and drawn from specific probability density functions (PDFs) introducing memory into the model. The first part of the paper is devoted to the macroscopic S-C-I-R-S model. We derive memory evolution equations involving convolutions (time derivatives of general fractional type). We consider several cases. The memoryless case is represented by exponentially distributed waiting times. Cases of long waiting times with fat-tailed waiting-time distributions are considered as well where the S-C-I-R-S evolution equations take the form of time-fractional ordinary differential equations. We obtain formulas for the endemic equilibrium and a condition of its existence for cases when the waiting-time PDFs have existing means. We analyze the stability of healthy and endemic equilibria and derive conditions for which the endemic state becomes oscillatory (Hopf) unstable. In the second part, we implement a simple multiple-random-walker approach (microscopic model of Brownian motion of Z independent walkers) with random S-C-I-R-S waiting times in computer simulations. Infections occur with a certain probability by collisions of walkers in compartments I and S. We compare the endemic states predicted in the macroscopic model with the numerical results of the simulations and find accordance of high accuracy. We conclude that a simple random-walker approach offers an appropriate microscopic description for the macroscopic model. The S-C-I-R-S-type models open a wide field of applications allowing the identification of pertinent parameters governing the phenomenology of epidemic dynamics such as extinction, convergence to a stable endemic equilibrium, or persistent oscillatory behavior.

4.
Sci Rep ; 13(1): 4890, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966183

RESUMO

We aim to study the temporal patterns of activity in points of interest of cities around the world. In order to do so, we use the data provided by the online location-based social network Foursquare, where users make check-ins that indicate points of interest in the city. The data set comprises more than 90 million check-ins in 632 cities of 87 countries in 5 continents. We analyzed more than 11 million points of interest including all sorts of places: airports, restaurants, parks, hospitals, and many others. With this information, we obtained spatial and temporal patterns of activities for each city. We quantify similarities and differences of these patterns for all the cities involved and construct a network connecting pairs of cities. The links of this network indicate the similarity of temporal visitation patterns of points of interest between cities and is quantified with the Kullback-Leibler divergence between two distributions. Then, we obtained the community structure of this network and the geographic distribution of these communities worldwide. For comparison, we also use a Machine Learning algorithm-unsupervised agglomerative clustering-to obtain clusters or communities of cities with similar patterns. The main result is that both approaches give the same classification of five communities belonging to five different continents worldwide. This suggests that temporal patterns of activity can be universal, with some geographical, historical, and cultural variations, on a planetary scale.

5.
Phys Rev E ; 105(4-1): 044318, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590568

RESUMO

We propose local-biased random walks on general networks where a Markovian walker is defined by different types of biases in each node to establish transitions to its neighbors depending on their degrees. For this ergodic dynamics, we explore the capacity of the random walker to visit all the nodes characterized by a global mean first passage time. This quantity is calculated using eigenvalues and eigenvectors of the transition matrix that defines the dynamics. In the first part, we illustrate how our framework leads to optimal exploration for small-size graphs through the analysis of all the possible bias configurations. In the second part, we study the most favorable configurations in each node by using simulated annealing. This heuristic algorithm allows obtaining approximate solutions of the optimal bias in different types of networks. The results show how the local bias can optimize the exploration of the network in comparison with the unbiased random walk. The methods implemented in this research are general and open the doors to a broad spectrum of tools applicable to different random walk strategies and dynamical processes on networks.

6.
Phys Rev E ; 105(2-1): 024205, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291108

RESUMO

We introduce a compartment model with memory for the dynamics of epidemic spreading in a constant population of individuals. Each individual is in one of the states S=susceptible, I=infected, or R=recovered (SIR model). In state R an individual is assumed to stay immune within a finite-time interval. In the first part, we introduce a random lifetime or duration of immunity which is drawn from a certain probability density function. Once the time of immunity is elapsed an individual makes an instantaneous transition to the susceptible state. By introducing a random duration of immunity a memory effect is introduced into the process which crucially determines the epidemic dynamics. In the second part, we investigate the influence of the memory effect on the space-time dynamics of the epidemic spreading by implementing this approach into computer simulations and employ a multiple random walker's model. If a susceptible walker meets an infectious one on the same site, then the susceptible one gets infected with a certain probability. The computer experiments allow us to identify relevant parameters for spread or extinction of an epidemic. In both parts, the finite duration of immunity causes persistent oscillations in the number of infected individuals with ongoing epidemic activity preventing the system from relaxation to a steady state solution. Such oscillatory behavior is supported by real-life observations and not captured by the classical standard SIR model.

7.
Sci Rep ; 12(1): 98, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997045

RESUMO

In this paper, we analyze a massive dataset with registers of the movement of vehicles in the bus rapid transit system Metrobús in Mexico City from February 2020 to April 2021. With these records and a division of the system into 214 geographical regions (segments), we characterize the vehicles' activity through the statistical analysis of speeds in each zone. We use the Kullback-Leibler distance to compare the movement of vehicles in each segment and its evolution. The results for the dynamics in different zones are represented as a network where nodes define segments of the system Metrobús and edges describe similarity in the activity of vehicles. Community detection algorithms in this network allow the identification of patterns considering different levels of similarity in the distribution of speeds providing a framework for unsupervised classification of the movement of vehicles. The methods developed in this research are general and can be implemented to describe the activity of different transportation systems with detailed records of the movement of users or vehicles.

8.
Contin Mech Thermodyn ; 33(4): 1207-1221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776647

RESUMO

We analyze the dynamics of a population of independent random walkers on a graph and develop a simple model of epidemic spreading. We assume that each walker visits independently the nodes of a finite ergodic graph in a discrete-time Markovian walk governed by his specific transition matrix. With this assumption, we first derive an upper bound for the reproduction numbers. Then, we assume that a walker is in one of the states: susceptible, infectious, or recovered. An infectious walker remains infectious during a certain characteristic time. If an infectious walker meets a susceptible one on the same node, there is a certain probability for the susceptible walker to get infected. By implementing this hypothesis in computer simulations, we study the space-time evolution of the emerging infection patterns. Generally, random walk approaches seem to have a large potential to study epidemic spreading and to identify the pertinent parameters in epidemic dynamics.

9.
Pharmaceutics ; 13(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34452258

RESUMO

We present a data-driven approach to unveil the pharmaceutical technologies of cyclodextrins (CDs) by analyzing a dataset of CD pharmaceutical patents. First, we implemented network science techniques to represent CD patents as a single structure and provide a framework for unsupervised detection of keywords in the patent dataset. Guided by those keywords, we further mined the dataset to examine the patenting trends according to CD-based dosage forms. CD patents formed complex networks, evidencing the supremacy of CDs for solubility enhancement and how this has triggered cutting-edge applications based on or beyond the solubility improvement. The networks exposed the significance of CDs to formulate aqueous solutions, tablets, and powders. Additionally, they highlighted the role of CDs in formulations of anti-inflammatory drugs, cancer therapies, and antiviral strategies. Text-mining showed that the trends in CDs for aqueous solutions, tablets, and powders are going upward. Gels seem to be promising, while patches and fibers are emerging. Cyclodextrins' potential in suspensions and emulsions is yet to be recognized and can become an opportunity area. This is the first unsupervised/supervised data-mining approach aimed at depicting a landscape of CDs to identify trending and emerging technologies and uncover opportunity areas in CD pharmaceutical research.

10.
Phys Rev E ; 103(6-1): 062126, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271672

RESUMO

We study the diffusive transport of Markovian random walks on arbitrary networks with stochastic resetting to multiple nodes. We deduce analytical expressions for the stationary occupation probability and for the mean and global first passage times. This general approach allows us to characterize the effect of resetting on the capacity of random walk strategies to reach a particular target or to explore the network. Our formalism holds for ergodic random walks and can be implemented from the spectral properties of the random walk without resetting, providing a tool to analyze the efficiency of search strategies with resetting to multiple nodes. We apply the methods developed here to the dynamics with two reset nodes and derive analytical results for normal random walks and Lévy flights on rings. We also explore the effect of resetting to multiple nodes on a comb graph, Lévy flights that visit specific locations in a continuous space, and the Google random walk strategy on regular networks.

11.
Phys Rev E ; 103(4-1): 042312, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005853

RESUMO

We introduce a general approach for the study of the collective dynamics of noninteracting random walkers on connected networks. We analyze the movement of R independent (Markovian) walkers, each defined by its own transition matrix. By using the eigenvalues and eigenvectors of the R independent transition matrices, we deduce analytical expressions for the collective stationary distribution and the average number of steps needed by the random walkers to start in a particular configuration and reach specific nodes the first time (mean first-passage times), as well as global times that characterize the global activity. We apply these results to the study of mean first-encounter times for local and nonlocal random walk strategies on different types of networks, with both synchronous and asynchronous motion.

12.
J Drug Deliv Sci Technol ; 61: 102156, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33078064

RESUMO

We herein disclose how global cyclodextrin-based pharmaceutical technologies have evolved since the early 80s through a 1998 patents dataset retrieved from Derwent Innovation Index. We used text-mining techniques based on the patents semantic content to extract the knowledge contained therein, to analyze technologies related to the principal attributes of CDs: solubility, stability, and taste-masking enhancement. The majority of CDs pharmaceutical technologies are directed toward parenteral aqueous solutions. The development of oral and ocular formulations is rapidly growing, while technologies for nasal and pulmonary routes are emerging and seem to be promising. Formulations for topical, transdermal, vaginal, and rectal routes do not account for a high number of patents, but they may be hiding a great potential, representing opportunity research areas. Certainly, the progress in materials sciences, supramolecular chemistry, and nanotechnology, will influence the trend of that, apparently neglected, research. The bottom line, CDs pharmaceutical technologies are still increasing, and this trend is expected to continue in the coming years. Patent monitoring allows the identification of relevant technologies and trends to prioritize research, development, and investment in both, academia and industry. We expect the scope of this approach to be applied in the pharmaceutical field beyond CDs technological applications.

13.
Phys Rev E ; 101(6-1): 062147, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688619

RESUMO

We study random walks with stochastic resetting to the initial position on arbitrary networks. We obtain the stationary probability distribution as well as the mean and global first passage times, which allow us to characterize the effect of resetting on the capacity of a random walker to reach a particular target or to explore a finite network. We apply the results to rings, Cayley trees, and random and complex networks. Our formalism holds for undirected networks and can be implemented from the spectral properties of the random walk without resetting, providing a tool to analyze the search efficiency in different structures with the small-world property or communities. In this way, we extend the study of resetting processes to the domain of networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...