Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38185835

RESUMO

Myostatin is a known negative regulator of muscle tissue growth. Thus, an inhibitor of myostatin may be therapeutically useful as an anabolic agent for the muscle tissue. A promising gene-silencing approach for gene therapy is DNA interference (DNAi), a sequence that is complementary to the promoter region of a target gene. To confer resistance to nuclease digestion, several modifications such as methylphosphonate or phosphorothioate have been proposed, wherein a nonbridging oxygen atom in the oligonucleotide phosphate backbone is replaced by sulphur. The aim of the present study was to assess the effectiveness of the DNAi molecule with phosphorothioate (PS) and without phosphorothioate (WPS) modification for inhibition of myostatin gene expression in mice. Eighteen four-week-old male BALB/c mice were randomly divided into three groups: DNAi-PS (n = 6), DNAi-WPS (n = 6) and control (n = 6). Intraperitoneal injections of DNAi (10 mg/kg) were given once a week, and mice body weights were measured weekly and sacrificed after three weeks. The expression of myostatin was assessed using real-time quantitative polymerace chain reaction. For histological evaluation, the skeletal muscle tissue was dissected from the biceps. The results were analysed by a t-test. Results demonstrated that administration of DNAi intraperitoneally with modification could suppress myostatin expression by up to 70%. Leg weight and histological analysis proved that chemically modified DNAi significantly suppressed the myostatin gene in mice. Overall, the results on DNA-induced gene silencing by antisense DNA oligonucleotides in animals can provide insight into the treatment of inherited diseases.


Assuntos
DNA , Miostatina , Animais , Masculino , Camundongos , Expressão Gênica , Terapia Genética , Músculo Esquelético , Miostatina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA