Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 64(10): 1152-1163, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35460447

RESUMO

Myzus persicae causes considerable losses to crops as a major pest. The damage is direct by feeding and also partly indirect because it vectors plant viruses. The currently available control strategies rely on unsafe and nonecofriendly chemical pesticide applications. Plant-mediated RNA interference (RNAi) has emerged as a powerful tool in crop protection from insect pests. Aphid salivary proteins are essential for phloem feeding and act as mediators of the complex interactions between aphids and their host plants. We documented the efficacy of dsRNA directed against macrophage inhibitory factor (MIF1) of M. persicae to induce aphid mortality and gene silencing through the generation of transgenic potato lines. A binary construct harbouring dsMIF1 driven by the CaMV35S promoter was introduced into the local potato variety 'AGB-white' by Agrobacterium-mediated transformation. PCR and Southern blotting validated the transgene presence and genomic integration in seven transgenic potato lines. An in vitro detached leaf assay revealed a significantly high aphid mortality of 65% in the transgenic potato line sDW-2, while the aphid mortality was 77% in the sDW-2 transgenic line during the in planta bioassay in comparison with 19% aphid mortality in the control nontransgenic potato line. A significantly high silencing effect was observed in the mRNA expression of MIF1, which was reduced to 21% in aphids fed on the transgenic potato line sDW-2. However, variable knockdown effects were found among six other transgenic potato lines, ranging from 30 to 62%. The study concluded that plant-mediated silencing of aphid RNA induces significant RNAi in M. persicae, along with enhanced aphid mortality.


Assuntos
Afídeos , Solanum tuberosum , Animais , Afídeos/genética , Macrófagos , Plantas Geneticamente Modificadas/genética , Interferência de RNA , RNA de Plantas , Solanum tuberosum/genética
2.
Front Immunol ; 12: 760135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975849

RESUMO

Efforts to develop broadly protective vaccines against pathogenic Escherichia coli are ongoing. A potential antigen candidate for vaccine development is the metalloprotease YghJ, or SslE. YghJ is a conserved mucinase that is immunogenic, heavily glycosylated, and produced by most pathogenic E. coli. To develop efficacious YghJ-based vaccines, there is a need to investigate to what extent potentially protective antibody responses target glycosylated epitopes in YghJ and to describe variations in the quality of YghJ glycosylation in the E. coli population. In this study we estimated the proportion of anti-YghJ IgA antibodies that targeted glycosylated epitopes in serum and intestinal lavage samples from 21 volunteers experimentally infected with wild-type enterotoxigenic E. coli (ETEC) strain TW10722. Glycosylated and non-glycosylated YghJ was expressed, purified, and then gycosylation pattern was verified by BEMAP analysis. Then we used a multiplex bead flow cytometric assay to analyse samples from before and 10 days after TW10722 was ingested. We found that 20 (95%) of the 21 volunteers had IgA antibody responses to homologous, glycosylated YghJ, with a median fold increase in IgA levels of 7.9 (interquartile range [IQR]: 7.1, 11.1) in serum and 3.7 (IQR: 2.1, 10.7) in lavage. The median proportion of anti-YghJ IgA response that specifically targeted glycosylated epitopes was 0.45 (IQR: 0.30, 0.59) in serum and 0.07 (IQR: 0.01, 0.22) in lavage. Our findings suggest that a substantial, but variable, proportion of the IgA antibody response to YghJ in serum during ETEC infection is targeted against glycosylated epitopes, but that gut IgA responses largely target non-glycosylated epitopes. Further research into IgA targeting glycosylated YghJ epitopes is of interest to the vaccine development efforts.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Imunoglobulina A/imunologia , Metaloproteases/imunologia , Anticorpos Antibacterianos/sangue , Escherichia coli Enterotoxigênica , Epitopos/imunologia , Infecções por Escherichia coli/sangue , Proteínas de Escherichia coli/genética , Glicosilação , Humanos , Imunidade nas Mucosas , Imunoglobulina A/sangue , Intestinos/imunologia , Metaloproteases/genética
3.
Pathogens ; 9(9)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872549

RESUMO

Infection with enterotoxigenic Escherichia coli (ETEC) is a major contributor to diarrheal illness in children in low- and middle-income countries and travelers to these areas. There is an ongoing effort to develop vaccines against ETEC, and the most reliable immune correlate of protection against ETEC is considered to be the small intestinal secretory IgA response that targets ETEC-specific virulence factors. Since isolating IgA from small intestinal mucosa is technically and ethically challenging, requiring the use of invasive medical procedures, several other indirect methods are used as a proxy for gauging the small intestinal IgA responses. In this review, we summarize the literature reporting on anti-ETEC human IgA responses observed in blood, activated lymphocyte assayss, intestinal lavage/duodenal aspirates, and saliva from human volunteers being experimentally infected with ETEC. We describe the IgA response kinetics and responder ratios against classical and noncanonical ETEC antigens in the different sample types and discuss the implications that the results may have on vaccine development and testing.

4.
Mol Biol Rep ; 47(8): 6309-6319, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32696345

RESUMO

Climate change imposes a great threat to world food security and encourages insect pest proliferation and spreading. Because of these challenges, identifying novel biotechnology pest management and its applications is inevitable. RNA interference (RNAi) is a gene regulatory process used for the maintenance and regulation of host defences against invading viruses. Nevertheless, it is widely used for the analysis of gene function. In recent years, the potential use of RNA interference (RNAi) as a tool for manipulating crop traits, as well as an alternative for crop protection, has undergone outstanding developments. In this review, we describe some genes involved in insect dsRNA uptake and discuss the reasons for varying RNAi response in insect pests, emphasizing the presence of nucleases and double-stranded RNA binding protein. We explore recent breakthroughs in innovative dsRNA delivery for efficient and effective knockdown in insect pests. Conclusively, topical delivery of dsRNA combined with a nanoparticle complex holds great potential for RNAi-mediated pest control.


Assuntos
Insetos/genética , Controle de Pragas/métodos , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Animais , Produtos Agrícolas/parasitologia , RNA Interferente Pequeno/genética
5.
Mol Biol Rep ; 47(4): 2649-2658, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32128710

RESUMO

Sustainable agriculture requires management of insect pests through resistance development. The biological potential of Cry toxins and Vip protein, derived from Bacillus species, is widely recognized in this context. The identification, evaluation of new insecticidal protein genes with different mode of action and entomotoxicity against sugarcane stem borer (Chilo infuscatellus) is important to overcome evolved insect resistance. In this study, we reported the generation of transgenic sugarcane lines expressing Vip3A toxin driven by polyubiquitin promoter for resistance against sugarcane stem borer. The V0 transgenic sugarcane plants were initially characterized by GUS histochemical staining, PCR and Southern blot assays that confirmed genetic transformation of twelve independent sugarcane lines. Variable transgene expression was found among transgenic sugarcane lines when revealed through Realtime quantitative PCR (RT-qPCR) with highest in S10 line while minimum was observed in V5 line. A similar expression pattern was observed in transgenic sugarcane lines for Vip3A protein concentration which ranged from 5.35 to 8.89 µg/mL. A direct correlation was observed between the Vip3A protein and Vip3A transgene expression in the transgenic sugarcane lines. In in-vitro insect bioassay on V1, Vip3A transgenic sugarcane lines exhibited high resistance to C. infuscatellus with upto 100% mortality compared to the control sugarcane line. Our findings suggest that a single copy insertion of Vip3A gene in transgenic sugarcane lines render them resistant to borer and these lines can be potentially used for generation of insect resistant transgenic sugarcane and could also be employed in gene pyramiding with Bt toxin to prolong resistance.


Assuntos
Proteínas de Bactérias/metabolismo , Agentes de Controle Biológico/metabolismo , Saccharum/genética , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Agentes de Controle Biológico/farmacologia , Insetos/genética , Inseticidas , Larva/metabolismo , Lepidópteros/genética , Mariposas/genética , Mariposas/patogenicidade , Plantas Geneticamente Modificadas/genética
6.
Turk J Biol ; 42(1): 45-53, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30814869

RESUMO

We evaluated transgenic lines of sugarcane modified with the barley chitinase class-II gene to create resistance against the red rot causative agent Colletotrichum falcatum Went. Local sugarcane cultivar SP93 was transformed with a 690-bp coding sequence of the chitinase-II gene under the influence of a polyubiquitin promoter. Transgenic sugarcane lines (T 0) overexpressing the chitinase gene were obtained through a particle bombardment method with 13.3% transformation efficiency. Four transgenic sugarcane lines, SCT-03, SCT-05, SCT-15, and SCT-20, were tested for resistance against red rot by in vitro antifungal assays. Crude protein extracts from transgenic sugarcane plants SCT-03, SCT-05, SCT-15, and SCT-20 inhibited the mycelial growth of C. falcatum by 49%, 40%, 56%, and 52%, respectively, in a quantitative in vitro assay. Our findings revealed that two transgenic lines, SCT-15 and SCT-20, exhibited the highest endochitinase activity of 0.72 and 0.58 U/mL, respectively. Furthermore, transgenic lines SCT-15 and SCT-20 exhibited strong resistance against inoculated C. falcatum in an in vitro bioassay, as they remained healthy and green in comparison with the control sugarcane plants, which turned yellow and eventually died 3 weeks after infection. The mRNA expression of the transgene in the C. falcatum-inoculated transgenic sugarcane lines increased gradually compared to the control plant. The mRNA expression was the highest at 72 h in both transgenic lines and remained almost stable in the subsequent hours.

7.
J Res Med Sci ; 23: 110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30693045

RESUMO

BACKGROUND: Diabetes mellitus is a chronic metabolic disorder of hyperglycemia. Chronic hyperglycemia produces advanced glycation end products such as the methylglyoxal (MGO) which interferes with cell functions, insulin signaling, and ß-cell functions. The present study was conducted to determine the effects of berberine (BBR) therapy on serum MGO and insulin resistance in newly diagnosed type 2 diabetic patients. MATERIALS AND METHODS: The present case-control study was conducted at the Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro/Hyderabad, from March 2016 to January 2017. A sample of 200 newly diagnosed type 2 diabetic patients was divided into two groups. Group 1 received metformin 500 mg (×3 daily) and Group 2 received BBR 500 mg (×3 daily) for 3 months. Blood samples were collected at baseline and after 3 months to analyze biochemical parameters on Roche biochemical analyzer. MGO was assayed by ELISA kit and homeostasis model assessment of insulin resistance (HOMA-IR) model. SPSS version 23.0 (IBM, Incorporation, USA) analyzed the data at 95% confidence interval (P ≤ 0.05). RESULTS: Baseline HOMA-IR (% IR) and MGO were found elevated in metformin and BBR groups. After 3 months of metformin and BBR therapy, the HOMA-IR (% IR) and MGO were decreased to 3.69 ± 1.13 and 2.64 ± 0.76 and 35.84 ± 12.56 and 26.64 ± 10.73 ng/dl, respectively (P = 0.0001). HOMA-IR (% IR) was improved by 40% and 73% (P = 0.0001) and MGO by 43% and 56% in metformin and BBR groups, respectively (P = 0.0001). CONCLUSION: BBR is more effective in decreasing the serum MGO levels and insulin resistance through improved glycemic control in newly diagnosed type 2 diabetic patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...