Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(50): eadh3156, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100588

RESUMO

One of the largest explosive eruptions instrumentally recorded occurred at Hunga volcano on 15 January 2022. The magma plumbing system under this volcano is unexplored because of inherent difficulties caused by its submarine setting. We use marine gravity data derived from satellite altimetry combined with multibeam bathymetry to model the architecture and dynamics of the magmatic system before and after the January 2022 eruption. We provide geophysical evidence for substantial high-melt content magma accumulation in three reservoirs at shallow depths (2 to 10 kilometers) under the volcano. We estimate that less than ~30% of the existing magma was evacuated by the main eruptive phases, enough to trigger caldera collapse. The eruption and caldera collapse reorganized magma storage, resulting in an increased connectivity between the two spatially distinct reservoirs. Modeling global satellite altimetry-derived gravity data at undersea volcanoes offer a promising reconnaissance tool to probe the subsurface for eruptible magma.

2.
Science ; 381(6662): 1085-1092, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676954

RESUMO

Volcanic eruptions on land create hot and fast pyroclastic density currents, triggering tsunamis or surges that travel over water where they reach the ocean. However, no field study has documented what happens when large volumes of erupted volcanic material are instead delivered directly into the ocean. We show how the rapid emplacement of large volumes of erupted material onto steep submerged slopes triggered extremely fast (122 kilometers per hour) and long-runout (>100 kilometers) seafloor currents. These density currents were faster than those triggered by earthquakes, floods, or storms, and they broke seafloor cables, cutting off a nation from the rest of the world. The deep scours excavated by these currents are similar to those around many submerged volcanoes, providing evidence of large eruptions at other sites worldwide.

3.
Sci Rep ; 12(1): 7500, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525863

RESUMO

With the COVID-19 pandemic came what media has deemed the "port congestion pandemic". Intensified by the pandemic, the commonplace anchoring of high-tonnage ships causes a substantial geomorphologial footprint on the seabed outside marine ports globally, but isn't yet quantified. We present the first characterisation of the footprint and extent of anchoring in a low congestion port in New Zealand-Aotearoa, demonstrating that high-tonnage ship anchors excavate the seabed by up to 80 cm, with the impacts preserved for at least 4 years. The calcuated volume of sediment displaced by one high-tonnage ship (> 9000 Gross Tonnage) on anchor can reach 2800 m3. Scaled-up globally, this provides the first estimates of the footprint of anchoring to the coastal seabed, worldwide. Seafloor damage due to anchoring has far-reaching implications for already stressed marine ecosystems and carbon cycling. As seaborne trade is projected to quadruple by 2050, the poorly constrained impacts of anchoring must be considered to avoid irreversible damage to marine habitats.


Assuntos
COVID-19 , Navios , Ecossistema , Humanos , Nova Zelândia , Pandemias
4.
Mar Environ Res ; 163: 105218, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33385975

RESUMO

The distribution of benthic ecosystems, dominated by filter-feeding communities, is highly influenced by the seabed geomorphology. However, the spatial variation in settlement of these species is also affected by near-bottom currents and any changes in light, nutrient concentration and food quality often associated with increases of suspended sediment concentrations within the water column. Detailed predictions of the geographic distribution of filter-feeder species and a deeper understanding of the physical processes influencing their distribution patterns is key for effective management and conservation. To date, predictive distribution modelling has been derived essentially from geomorphological parameters, mainly using spatially limited observations. In this study, seabed mapping, oceanographic modelling, hydrographic records and biological observations are integrated to provide high-resolution prediction of filter-feeder habitat distribution within Queen Charlotte Sound/Totaranui and Tory Channel/Kura Te Au, South Island of New Zealand. The aim is to evaluate potential suitable habitat areas for filter-feeders to inform where habitat restoration management should focus efforts to recover communities such as the horse mussel (Atrina zelandica) or the green-lipped mussel (Perna canaliculus), both of which have high economic impact in New Zealand. To accomplish this, Maximum Entropy (MaxEnt) predictive modelling was used to produce Habitat Suitability (HS) maps, using geomorphological parameters and seafloor classification information. Final HS maps also incorporated oceanographic and sediment dynamic information, showing that filter-feeder habitat distribution is highly influenced by the hydrodynamics and sedimentary processes apart from the seafloor geomorphology. Filter-feeder communities inhabit quiescent areas, limited by depth, slope and sediment type; and coincide with regions presenting low near-bottom currents and low turbidity levels. Additionally, the obtained results reveal the effects of the coastal settlements and major marine traffic routes, limiting the suitable habitats to areas with less human impact. This study demonstrates that a multidisciplinary approach is crucial to better predict the spatial distribution of benthic communities, which is key to improve benthic habitat restoration and recovery assessments.


Assuntos
Organismos Aquáticos , Conservação dos Recursos Naturais , Ecossistema , Comportamento Alimentar , Nova Zelândia
5.
Sci Rep ; 10(1): 462, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949172

RESUMO

Submerged paloeshorelines preserved on the continental shelf indicate the depths of the most frequent (modal) low sea-levels within the glacial stages of the Late Quaternary. Here we have determined the south-east Australian shelf configuration when sea level was 40 m and 60 m below present-day sea-level (depths of the most persistent paleoshorelines within the last 120 ka), and we resolve the wave climate variations influencing the sediment transport pathways over this period. We present evidence demonstrating that the combination of shelf morphological evolution, changes in sea-level and variations in wave climate is responsible for latitudinal changes in sediment transport and deposition during the interglacial states. The paleoshoreline and shelf evolution is key to understanding the distribution of present-day shelf sand deposits and the contemporary sand budget response to future wave climate changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...