Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 804: 150216, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520930

RESUMO

European harbours are known to contribute to air quality degradation. While most of the literature focuses on emissions from stacks or logistics operations, ship refit and repair activities are also relevant aerosol sources in EU harbour areas. Main activities include abrasive removal of filler and spray painting with antifouling coatings/primers/topcoats. This work aimed to assess ultrafine particle (UFP) emissions from ship maintenance activities and their links with exposure, toxicity and health risks for humans and the aquatic environment. Aerosol emissions were monitored during mechanical abrasion of surface coatings under real-world operating conditions in two scenarios in the Mallorca harbour (Spain). Different types of UFPs were observed: (1) highly regular (triangular, hexagonal) engineered nanoparticles (Ti-, Zr-, Fe-based), embedded as nano-additives in the coatings, and (2) irregular, incidental particles emitted directly or formed during abrasion. Particle number concentrations monitored were in the range of industrial activities such as drilling or welding (up to 5 ∗ 105/cm3, mean diameters <30 nm). The chemical composition of PM4 aerosols was dominated by metallic tracers in the coatings (Ti, Al, Ba, Zn). In vitro toxicity of PM2 aerosols evidenced reduced cell viability and a moderate potential for cytotoxic effects. While best practices (exhaust ventilation, personal protective equipment, dust removal) were in place, it is unlikely that exposures and environmental release can be fully avoided at all times. Thus, it is advisable that health and safety protocols should be comprehensive to minimise exposures in all types of locations (near- and far-field) and periods (activity and non-activity). Potential release to coastal surface waters of metallic engineered and incidental nanomaterials, as well as fine and coarse particles (in the case of settled dust), should be assessed and avoided.


Assuntos
Monitoramento Ambiental , Soldagem , Aerossóis/análise , Humanos , Tamanho da Partícula , Material Particulado/análise , Material Particulado/toxicidade
2.
Ann Work Expo Health ; 65(8): 966-978, 2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314505

RESUMO

Incidental ultrafine particles (UFPs) constitute a key pollutant in industrial workplaces. However, characterizing their chemical properties for exposure and toxicity assessments still remains a challenge. In this work, the performance of an aerosol concentrator (Versatile Aerosol Concentration Enrichment System, VACES) was assessed to simultaneously sample UFPs on filter substrates (for chemical analysis) and as liquid suspensions (for toxicity assessment), in a high UFP concentration scenario. An industrial case study was selected where metal-containing UFPs were emitted during thermal spraying of ceramic coatings. Results evidenced the comparability of the VACES system with online monitors in terms of UFP particle mass (for concentrations up to 95 µg UFP/m3) and between filters and liquid suspensions, in terms of particle composition (for concentrations up to 1000 µg/m3). This supports the applicability of this tool for UFP collection in view of chemical and toxicological characterization for incidental UFPs. In the industrial setting evaluated, results showed that the spraying temperature was a driver of fractionation of metals between UF (<0.2 µm) and fine (0.2-2.5 µm) particles. Potentially health hazardous metals (Ni, Cr) were enriched in UFPs and depleted in the fine particle fraction. Metals vaporized at high temperatures and concentrated in the UF fraction through nucleation processes. Results evidenced the need to understand incidental particle formation mechanisms due to their direct implications on particle composition and, thus, exposure. It is advisable that personal exposure and subsequent risk assessments in occupational settings should include dedicated metrics to monitor UFPs (especially, incidental).


Assuntos
Exposição Ocupacional , Material Particulado , Aerossóis , Monitoramento Ambiental , Humanos , Exposição Ocupacional/análise , Tamanho da Partícula , Material Particulado/análise , Local de Trabalho
3.
Sci Total Environ ; 671: 474-487, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30933802

RESUMO

Packing of raw materials in work environments is a known source of potential health impacts (respiratory, cardiovascular) due to exposure to airborne particles. This activity was selected to test different exposure and risk assessment tools, aiming to understand the effectiveness of source enclosure as a strategy to mitigate particle release. Worker exposure to particle mass and number concentrations was monitored during packing of 7 ceramic materials in 3 packing lines in different settings, with low (L), medium (M) and high (H) degrees of source enclosure. Results showed that packing lines L and M significantly increased exposure concentrations (119-609 µg m-3 respirable, 1150-4705 µg m-3 inhalable, 24,755-51,645 cm-3 particle number), while non-significant increases were detected in line H. These results evidence the effectiveness of source enclosure as a mitigation strategy, in the case of packing of ceramic materials. Total deposited particle surface area during packing ranged between 5.4 and 11.8 × 105 µm2 min-1, with particles depositing mainly in the alveoli (51-64%) followed by head airways (27-41%) and trachea bronchi (7-10%). The comparison between the results from different risk assessment tools (Stoffenmanager, ART, NanoSafer) and the actual measured exposure concentrations evidenced that all of the tools overestimated exposure concentrations, by factors of 1.5-8. Further research is necessary to bridge the current gap between measured and modelled health risk assessments.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental , Exposição por Inalação/análise , Exposição Ocupacional/análise , Embalagem de Produtos , Monitoramento Ambiental/métodos , Humanos , Modelos Teóricos , Medição de Risco , Local de Trabalho
4.
Sci Total Environ ; 532: 176-83, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26070027

RESUMO

Marine fish are threatened by anthropogenic chemical discharges. However, knowledge on adverse effects on deep-sea fish or their detoxification capabilities is limited. Herein, we compared the basal activities of selected hepatic detoxification enzymes in several species (Solea solea, Dicentrarchus labrax, Trachyrhynchus scabrus, Mora moro, Cataetix laticeps and Alepocehalus rostratus) collected from the coast, middle and lower slopes of the Blanes Canyon region (Catalan continental margin, NW Mediterranean Sea). The xenobiotic-detoxifying enzymes analysed were the phase-I carboxylesterases (CbEs), and the phase-II conjugation activities uridine diphosphate glucuronyltransferase (UDPGT) and glutathione S-transferase (GST). Moreover, some antioxidant enzyme activities, i.e., catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GR), were also included in this comparative study. Because CbE activity is represented by multiple isoforms, the substrates α-naphthyl acetate (αNA) and ρ-nitrophenyl acetate (ρNPA) were used in the enzyme assays, and in vitro inhibition kinetics with dichlorvos were performed to compare interspecific CbE sensitivity. Activity of xenobiotic detoxification enzymes varied among the species, following a trend with habitat depth and body size. Thus, UDPGT and some antioxidant enzyme activities decreased in fish inhabiting lower slopes of deep-sea, whereas UDPGT and αNA-CbE activities were negatively related to fish size. A trend between CbE activities and the IC50 values for dichlorvos suggested S. solea and M. moro as potentially more sensitive to anticholinesterasic pesticides, and T. scabrus as the most resistant one. A principal component analysis considering all enzyme activities clearly identified the species but this grouping was not related to habitat depth or phylogeny. Although these results can be taken as baseline levels of the main xenobiotic detoxification enzymes in Mediterranean fish, further research is needed to evaluate their response to environmental contaminant exposure.


Assuntos
Biotransformação , Linguados/fisiologia , Fígado/enzimologia , Poluentes Químicos da Água/toxicidade , Xenobióticos/toxicidade , Animais , Catalase/metabolismo , Linguados/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Naftóis/metabolismo , Poluentes Químicos da Água/metabolismo , Xenobióticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...