Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 11: 231, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824380

RESUMO

Limited axon regeneration in the injured adult mammalian central nervous system (CNS) usually results in irreversible functional deficits. Both the presence of extrinsic inhibitory molecules at the injury site and the intrinsically low capacity of adult neurons to grow axons are responsible for the diminished capacity of regeneration in the adult CNS. Conversely, in the embryonic CNS, neurons show a high regenerative capacity, mostly due to the expression of genes that positively control axon growth and downregulation of genes that inhibit axon growth. A better understanding of the role of these key genes controlling pro-regenerative mechanisms is pivotal to develop strategies to promote robust axon regeneration following adult CNS injury. Genetic manipulation techniques have been widely used to investigate the role of specific genes or a combination of different genes in axon regrowth. This review summarizes a myriad of studies that used genetic manipulations to promote axon growth in the injured CNS. We also review the roles of some of these genes during CNS development and suggest possible approaches to identify new candidate genes. Finally, we critically address the main advantages and pitfalls of gene-manipulation techniques, and discuss new strategies to promote robust axon regeneration in the mature CNS.

2.
Mol Neurobiol ; 54(1): 72-86, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26732591

RESUMO

Axonal degeneration is one of the initial steps in many traumatic and neurodegenerative central nervous system (CNS) disorders and thus a promising therapeutic target. A focal axonal lesion is followed by acute axonal degeneration (AAD) of both adjacent axon parts, before proximal and distal parts follow different degenerative fates at later time points. Blocking calcium influx by calcium channel inhibitors was previously shown to attenuate AAD after optic nerve crush (ONC). However, it remains unclear whether the attenuation of AAD also promotes consecutive axonal regeneration. Here, we used a rat ONC model to study the effects of calcium channel inhibitors on axonal degeneration, retinal ganglion cell (RGC) survival, and axonal regeneration, as well as the molecular mechanisms involved. Application of calcium channel inhibitors attenuated AAD after ONC and preserved axonal integrity as visualized by live imaging of optic nerve axons. Consecutively, this resulted in improved survival of RGCs and improved axonal regeneration at 28 days after ONC. We show further that calcium channel inhibition attenuated lesion-induced calpain activation in the proximity of the crush and inhibited the activation of the c-Jun N-terminal kinase pathway. Pro-survival signaling via Akt in the retina was also increased. Our data thus show that attenuation of AAD improves consecutive neuronal survival and axonal regeneration and that calcium channel inhibitors could be valuable tools for therapeutic interventions in traumatic and degenerative CNS disorders.


Assuntos
Axônios/fisiologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/prevenção & controle , Células Ganglionares da Retina/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Feminino , Compressão Nervosa , Regeneração Nervosa/efeitos dos fármacos , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/patologia , Nervo Óptico/fisiologia , Traumatismos do Nervo Óptico/patologia , Ratos , Ratos Wistar , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...