Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(34): 13032-13045, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35968924

RESUMO

The use of purely organic materials is a promising approach for the miniaturization of devices due to their interesting optical, electronic and magnetic properties. Bisdithiazolyl-based bisDTA compounds have emerged as promising candidates for radical-based single component conductors exhibiting simultaneously magnetic properties. Our computational work focuses on the intriguing magnetism of 4 isostructural pyridine-bridged bisDTA-multifunctional materials triggered by their magnetic and conducting properties being strongly dependent on the different S/Se ratios in the neutral radical skeleton: specifically, bisdithiazolyl (S,S) displays no magnetic order at low temperatures, thiaselenazolyl (Se,S) exhibits spin-canted antiferromagnetism (AFM), and both (S,Se) and bisdiselenazolyl (Se,Se) behave as bulk ferromagnets (FM). Our results reveal that (1) the magnetic response depends on the existence of an intricate network of both AFM and FM spin exchange JAB couplings between neighbouring radicals; and (2) the structural arrangement of π-stacked pairs of radicals sits on a point in the configurational space that is very close to a crossover region where JAB switches from AFM to FM. Indeed, for bulk FM, the experimental response is only accounted for when considering an ab initio optimised crystal structure able to portray adequately the electronic structure of bisDTAs in the region close to the temperature at which magnetic ordering emerges. Magneto-structural correlation maps show the large sensitivity of JAB to very small structural changes with temperature along the π-stacks that lead to drastic changes in the magnetic properties. Clearly, the understanding of magnetism in the title bisDTA compounds is decisive to rationally tailor the properties of multifunctional materials by subtle structural modifications of their crystal packing.

2.
Chem Commun (Camb) ; 51(87): 15776-9, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26365263

RESUMO

The mechanism of the phase transition of 1-phenyl-3-trifluoromethyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl (1), the first reported triazinyl radical to present such a feature, is unveiled. In so doing, we identify the key ingredients that are crucial to enable the phase transition in this family of radicals, and how those can be exploited by a rational design of the spin-carrying units.

3.
Chem Sci ; 6(1): 123-131, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28616127

RESUMO

The aerobic reaction of the multidentate ligand 2,6-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-pyridine, H4L, with Co(ii) salts in strong basic conditions produces the clusters [Co4(L)2(OH)(py)7]NO3 (1) and [Co8Na4(L)4(OH)2(CO3)2(py)10](BF4)2 (2). Analysis of their structure unveils unusual coordination features including a very rare bridging pyridine ligand or two trapped carbonate anions within one coordination cage, forced to stay at an extremely close distance (dO···O = 1.946 Å). This unprecedented non-bonding proximity represents a meeting point between long covalent interactions and "intermolecular" contacts. These original motifs have been analysed here through DFT calculations, which have yielded interaction energies and the reduced repulsion energy experimented by both CO32- anions when located in close proximity inside the coordination cage.

4.
J Chem Phys ; 125(17): 174312, 2006 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17100444

RESUMO

Recently, there has been a proposal [Y.-H. Kim et al., Phys. Rev. B 68, 125420 (2003)] suggesting that ferromagnetic interactions in compressed and heated polymeric-C(60) solids could be due to the existence of triplet open cages resulting from successive generalized Stone-Wales transformations within the C(60) cage. Here, by performing B3LYP3-21G and B3LYP6-31G(d) optimizations, we carried out a systematic investigation of the thermodynamics and kinetics of the mechanism of generation of these open cages in their closed-shell singlet, open-shell singlet, and triplet states. We also computed the magnetic interactions induced by the open cages presenting a triplet ground state. Our results indicate that this mechanism is not appropriate to explain the ferromagnetism found in compressed and heated polymeric C(60) for the following reasons: (a) the formation of the only open cage presenting a triplet ground state requires overpassing a highest energy point of 318 kcal/mol, well above other competitive mechanisms reported in the literature; the triplet open cages formed are not stable against their transformation into a diamagnetic intermediate; (c) the magnetic interactions between two adjacent triplet open cages are antiferromagnetic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...