Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Toxicol ; 37(3): 251-77, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17453934

RESUMO

Many modern cosmetic or sunscreen products contain nano-sized components. Nanoemulsions are transparent and have unique tactile and texture properties; nanocapsule, nanosome, noisome, or liposome formulations contain small vesicles (range: 50 to 5000 nm) consisting of traditional cosmetic materials that protect light-or oxygen-sensitive cosmetic ingredients. Transdermal delivery and cosmetic research suggests that vesicle materials may penetrate the stratum corneum (SC) of the human skin, but not into living skin. Depending on the physical/chemical properties of the ingredient and the formulation, nano-sized formulations may enhance or reduce skin penetration, albeit at a limited rate. Modern sunscreens contain insoluble titanium dioxide (TiO(2)) or zinc oxide (ZnO) nanoparticles (NP), which are colorless and reflect/scatter ultraviolet (UV) more efficiently than larger particles. Most available theoretical and experimental evidence suggests that insoluble NP do not penetrate into or through normal as well as compromised human skin. Oral and topical toxicity data suggest that TiO(2) and ZnO NP have low systemic toxicity and are well tolerated on the skin. In vitro cytotoxicity, genotoxicity, and photogenotoxicity studies on TiO(2) or other insoluble NP reporting uptake by cells, oxidative cell damage, or genotoxicity should be interpreted with caution, since such toxicities may be secondary to phagocytosis of mammalian cells exposed to high concentrations of insoluble particles. Caution needs to be exercised concerning topical exposure to other NP that either have characteristics enabling some skin penetration and/or have inherently toxic constituents. Studies on wear debris particles from surgical implants and other toxicity studies on insoluble particles support the traditional toxicology view that the hazard of small particles is mainly defined by the intrinsic toxicity of particles, as distinct from their particle size. There is little evidence supporting the principle that smaller particles have greater effects on the skin or other tissues or produce novel toxicities relative to micro-sized materials. Overall, the current weight of evidence suggests that nano-materials such as nano-sized vesicles or TiO(2) and ZnO nanoparticles currently used in cosmetic preparations or sunscreens pose no risk to human skin or human health, although other NP may have properties that warrant safety evaluation on a case-by-case basis before human use.


Assuntos
Cosméticos/química , Cosméticos/toxicidade , Fármacos Dermatológicos/química , Fármacos Dermatológicos/toxicidade , Nanopartículas , Protetores Solares/química , Protetores Solares/toxicidade , Animais , Humanos
2.
Food Chem Toxicol ; 42(1): 93-105, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14630133

RESUMO

Kojic acid (KA), a natural substance produced by fungi or bacteria, such as Aspergillus, Penicillium or Acetobacter spp, is contained in traditional Japanese fermented foods and is used as a dermatological skin-lightening agent. High concentrations of KA (>or=1000 microg/plate) were mutagenic in S. typhimurium strains TA 98, TA 100, TA 1535, TA102 and E. coli WP2uvrA, but not in TA 1537. An Ames test following the "treat and plate" protocol was negative. A chromosome aberration test in V79 cells following a robust protocol showed only a marginal increase in chromosome aberrations at cytotoxic concentrations after prolonged (>or=18 h) exposure. No genotoxic activity was observed for hprt mutations either in mouse lymphoma or V79 cells, or in in vitro micronucleus tests in human keratinocytes or hepatocytes. All in vivo genotoxicity studies on KA doses were negative, including mouse bone marrow micronucleus tests after single or multiple doses, an in vivo/in vitro unscheduled DNA synthesis (UDS) test, or a study in the liver of the transgenic Muta(TM) Mouse. On the basis of pharmacokinetic studies in rats and in vitro absorption studies in human skin, the systemic exposure of KA in man following its topical application is estimated to be in the range of 0.03-0.06 mg/kg/day. Comparing these values with the NOAEL in oral subchronic animal studies (250 mg/kg/day), the calculated margin of safety would be 4200- to 8900-fold. Comparing human exposure with the doses that were negative for micronuclei, UDS and gene mutations in vivo, the margins of safety are 16000 to 26000-fold. In conclusion, the topical use of KA as a skin lightening agent results in minimal exposure that poses no or negligible risk of genotoxicity or toxicity to the consumer.


Assuntos
Antioxidantes/toxicidade , Mutagênicos , Pironas/toxicidade , Administração Tópica , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Bactérias/genética , Células da Medula Óssea/efeitos dos fármacos , Aberrações Cromossômicas/induzido quimicamente , DNA/biossíntese , DNA/genética , Reparo do DNA/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Óperon Lac/genética , Masculino , Camundongos , Testes para Micronúcleos , Testes de Mutagenicidade , Pironas/administração & dosagem , Pironas/farmacocinética , Ratos , Ratos Wistar , Medição de Risco , Absorção Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...