Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 289: 112561, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33865021

RESUMO

The consumption of low-calorie sweeteners (LCSs) such as acesulfame (ACE), sucralose (SUC), saccharin (SAC), cyclamate (CYC), aspartame (ASP), neotame (NEO), and stevioside (STV) is increasing worldwide to meet the demand for reduced-calorie foods and beverages. However, there are no consumption data available in Brazil, as well as their concentration in sewage and removal on wastewater treatment plants (WWTPs). In the present study, ACE, SUC, SAC, CYC, ASP, NEO, and STV were assessed at five WWTPs located in the metropolitan region of Campinas (São Paulo State, Brazil), in operation with different treatment processes. Surface water was also analyzed. Analyses were carried out by on-line solid-phase extraction ultra-high performance liquid chromatography-tandem mass spectrometry. The major points are the following: LCS concentrations in the influents ranged from 0.25 to 189 µg L-1 and followed the order CYC > ACE > SAC > SUC. NEO, ASP, and STV were not detected at any sampling site. Sweetener concentrations in the WWTP outputs differed mainly due to the different treatment setups employed. CYC and SAC were completely removed by biodegradation-based processes, while ACE removal was favored by the anaerobic-anoxic-aerobic process. SUC presented the highest concentration in the treated sewage, even at the WWTP operating with ultrafiltration membranes and therefore could be a marker compound for evaluation of the efficiency of removal of contaminants in WWTPs. Risk quotient estimation, using the PNEC and MEC values, indicated that the levels of the LCS reported here were harmless to the biota. The consumption of ACE, CYC, SAC, and SUC was estimated to be 2634 t year-1.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Brasil , Esgotos , Edulcorantes/análise , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 727: 138661, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32334225

RESUMO

According to the World Health Organization, >360 million people worldwide suffer from mental diseases such as depression, anxiety, or bipolar disorder, for which psychotropic drugs are frequently prescribed. Despite being highly metabolized in the human organism, non-metabolized portions of these drugs are excreted, subsequently reaching wastewater treatment plants (WWTPs), where they may be incompletely removed during treatment, leading to the contamination of surface waters. In this work, ten psychotropic drugs widely consumed in Brazil (alprazolam, amitriptyline, bupropion, carbamazepine, clonazepam, escitalopram, fluoxetine, nortriptyline, sertraline, and trazadone) were monitored at five WWTPs located in the metropolitan region of Campinas (São Paulo State, Brazil). The drugs were determined in the influents, at different stages of the treatments, and in the effluents. Surface waters from the Atibaia River and the Anhumas Creek were also monitored. Quantitation of the pharmaceuticals was carried out by online solid-phase extraction coupled with ultra-high performance liquid chromatography and tandem mass spectrometry. The method was validated and presented a limit of quantitation of 50 ng L-1 for all the drugs assessed. Six of the substances monitored were quantified in the samples collected from the different treatment processes employed at the WWTPs. These technologies were unable to act as barriers for these psychotropics drugs. The concentrations ranged from 50 to 3000 ng L-1 in the WWTP effluents, while the main contaminants were found in surface waters at concentrations from 25 to 3530 ng L-1. The levels of the psychotropic detected in this work did not appear to present risks to the aquatic biota.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água/análise , Brasil , Monitoramento Ambiental , Humanos , Psicotrópicos , Rios , Extração em Fase Sólida , Águas Residuárias/análise
3.
Environ Sci Eur ; 26(1): 22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27752419

RESUMO

BACKGROUND: Many dyes can be considered emerging contaminants. The most widely used dyes belong to the class of azo compounds, some of which are known to have toxic and genotoxic properties. They are used in great quantities in textile activities and are of environmental concern because of their potential discharge in water. Planarians have been successfully used as test organisms in hazard evaluation of different chemicals, and we demonstrate the suitability of Girardia tigrina for laboratory testing. The aim of this work was to evaluate the suitability of the planarian species G. tigrina to assess the ability of the azo textile dye disperse red 1 to cause acute toxicity and adverse effects in the regeneration and reproduction of newborn and adult specimens. RESULTS: Disperse red 1 presented a median LC50 of 75 and 152 mg/L, respectively, for newborns and adults of G. tigrina, showing that newborns are twice as susceptible to the dye. Uncoordinated movements, irregular twists, colored skin, increased mucous production, and regenerative delays were observed after dye exposure at sub-lethal concentrations. CONCLUSIONS: A no-observed-adverse-effect concentration (NOAEC) of 0.1 mg/L could be determined for disperse red 1 based on the fecundity test. Zinc seems to be a suitable positive control for monitoring the sensitivity in G. tigrina tests within only 24 h of exposure. This study demonstrates the applicability of G. tigrina tests in the hazard evaluation of water contaminants, such as azo dyes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...