Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 193: 105420, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248027

RESUMO

Tuta absoluta can cause 100% loss in tomato yield in Brazil and chemical control, which uses cartap hydrochloride (nereistoxin derivative), is still the most used tactic against T. absoluta populations. Despite the long use of cartap hydrochloride, the genetic and physiological bases underlying the resistance are not known. Resistance to cartap hydrochloride among field populations varied from very low (RR = 2.3 fold) to very high (RR = 537 fold). The Gameleira 2 (GML 2-Res) population was exposed to cartap hydrochloride (up to 500 mg L-1) for few rounds of selection to clean extrinsic factors before used in downstream experiments after 2.5 years without selection in laboratory. Resistance to cartap hydrochloride was autosomal, incompletely recessive, and polyfactorial. The effective dominance (dominance level of survival at a given insecticide dose) at 60 mg of cartap hydrochloride L-1 (which killed 100% of heterozygous individuals) discriminated resistant from susceptible phenotypes. Hydrolases and glutathione S-transferase appear to detoxify cartap hydrochloride as TPP and DEM synergized its toxicity, but CYP450-dependent monooxygenases are as well implicated. Cross-resistance was significant between cartap hydrochloride and methoxyfenozide (RR = 6.99 fold), deltamethrin (RR = 3.57 fold), chlorfenapyr (RR = 3.21 fold), or chlorantraniliprole (RR = 2.83 fold). The characterization of T. absoluta resistance to cartap hydrochloride provides valuable information to refine the management of resistance to insecticides (MRI) program in Brazil with cross resistance pattern very favorable to the rotation of active ingredients that will impair survival of this pest to that insecticide in the field.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Sistema Enzimático do Citocromo P-450/genética
2.
J Econ Entomol ; 109(5): 2190-2195, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27427509

RESUMO

Tuta absoluta (Meyrick), one of the most important tomato pests worldwide, is heavily controlled by the application of insecticides. Diamide insecticides represent a new class of products recently registered to control T. absoluta After 6 yr of use, control failures have been reported in populations of this pest, suggesting a hypothetical resistance development. Therefore, a resistance survey was performed using nine populations of T. absoluta that were collected in open fields, including from areas with reports of a reduced efficacy of diamides in the Northeast and Central regions of Brazil. Initial surveys with diagnostic and label doses proved the reduced efficacy of diamides against most populations. The LC50 values of chlorantraniliprole varied from 0.0044 (Brasília) to 1,263 (América Dourada) mg AI liter-1 (the resistance ratios [RR50] ranged from 1.0- to 288,995-fold), whereas the LC50 values for cyantraniliprole and flubendiamide, respectively, varied from 0.015 (Brasília) to 281 (América Dourada) mg AI liter-1 and from 0.038 (Guaraciaba do Norte) to 3,018 (Gameleira 1) mg AI liter-1 The resistance ratios (RR50) ranged from 1.0- to 18,423-fold for cyantraniliprole and from 1.0- to 80,413-fold for flubendiamide. The log LC50 values of pairwise diamides were strongly and significantly correlated, which denoted cross-resistance among them. Very high resistance to diamides in T. absoluta was observed in this study, suggesting that strategies to mitigate resistance and thereby control the pest must not include only insecticides. Other control tactics must be carefully implemented over time to increase the life span of diamides, including rotational practices with other molecules.

3.
Pestic Biochem Physiol ; 131: 1-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27265820

RESUMO

The tomato leafminer, Tuta absoluta, now a major pest of tomato crops worldwide, is primarily controlled using chemical insecticides. Recently, high levels of resistance to the insecticide spinosad have been described in T. absoluta populations in Brazil. Selection of a resistant field-collected strain led to very high levels of resistance to spinosad and cross-resistance to spinetoram, but not to other insecticides that target the nicotinic acetylcholine receptor (nAChR). In this study the mechanisms underlying resistance to spinosad were investigated using toxicological, biochemical and molecular approaches. Inhibition of metabolic enzymes using synergists and biochemical assessment of detoxification enzyme activity provided little evidence of metabolic resistance in the selected strain. Cloning and sequencing of the nAChR α6 subunit from T. absoluta, the spinosad target-site, from susceptible and spinosad-resistant strains were done to investigate the role of a target-site mechanism in resistance. A single nucleotide change was identified in exon 9 of the α6 subunit of the resistant strain, resulting in the replacement of the glycine (G) residue at position 275 observed in susceptible T. absoluta strains with a glutamic acid (E). A high-throughput DNA-based diagnostic assay was developed and used to assess the prevalence of the G275E mutation in 17 field populations collected from different geographical regions of Brazil. The resistant allele was found at low frequency, and in the heterozygous form, in seven of these populations but at much higher frequency and in the homozygous form in a population collected in the Iraquara municipality. The frequency of the mutation was significantly correlated with the mortality of these populations in discriminating dose bioassays. In summary our results provide evidence that the G275E mutation is an important mechanism of resistance to spinosyns in T. absoluta, and may be used as a marker for resistance monitoring in field populations.


Assuntos
Substituição de Aminoácidos/genética , Inseticidas/farmacologia , Macrolídeos/farmacologia , Mariposas/genética , Receptores Nicotínicos/genética , Animais , Combinação de Medicamentos , Resistência a Inseticidas , Mariposas/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...