Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 100(1): 57-68, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25398717

RESUMO

NEW FINDINGS: What is the central question of this study? Different nerve contributes periods of life are known for their differential sensitivity to interventions, and increased parasympathetic activity affects the development and maintenance of obesity. Thus, we evaluated the involvement of the vagus nerve by performing a vagotomy in young or adult rats that were offered an obesogenic high-fat diet. What is the main finding and its importance? Although the accumulation of adipose tissue decreased in both younger and older groups, the younger rats showed a greater response to the effects of vagotomy in general. In addition to the important role of the parasympathetic activity, we suggest that the vagus nerve contributes to the condition of obesity. Obesity has become a global problem, and this condition develops primarily because of an imbalance between energy intake and expenditure. The high complexity involved in the regulation of energy metabolism results from several factors besides endocrine factors. It has been suggested that obesity could be caused by an imbalance in the autonomous nervous system, which could lead to a condition of high parasympathetic activity in counterpart to low sympathetic tonus. High-fat (HF) diets have been used to induce obesity in experimental animals, and their use in animals leads to insulin resistance, hyperinsulinaemia and high parasympathetic activity, among other disorders. The aim of this work was to evaluate the effects of a vagotomy performed at the initiation of a HF diet at two different stages of life, weaning and adulthood. The vagotomy reduced parasympathetic activity (-32 and -51% in normal fat-fed rats and -43 and -55% in HF diet-fed rats; P < 0.05) and fat depots (-17 and -33%, only in HF diet-fed rats; P < 0.05). High-fat diet-fed rats exhibited fasting hyperinsulinaemia (fivefold higher in young rats and threefold higher in older rats; P < 0.05); however, vagotomy corrected it in younger rats only, and a similar effect was also observed during the glucose tolerance test. The insulin resistance exhibited by the HF diet-fed groups was not altered in the vagotomized rats. We suggest that the vagus nerve, in addition to the important role of parasympathetic activity, contributes to the condition of obesity, and that non-vagal pathways may be involved along with the imbalanced autonomic nervous system.


Assuntos
Dieta Hiperlipídica , Síndrome Metabólica/etiologia , Obesidade/etiologia , Nervo Vago/fisiopatologia , Adiposidade , Fatores Etários , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Modelos Animais de Doenças , Insulina/sangue , Resistência à Insulina , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/fisiopatologia , Síndrome Metabólica/prevenção & controle , Obesidade/sangue , Obesidade/fisiopatologia , Obesidade/prevenção & controle , Ratos Wistar , Fatores de Tempo , Vagotomia , Nervo Vago/cirurgia , Desmame , Aumento de Peso
2.
Br J Nutr ; 111(2): 227-35, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23841989

RESUMO

Impaired pancreatic ß-cell function, as observed in the cases of early nutrition disturbance, is a major hallmark of metabolic diseases arising in adulthood. In the present study, we aimed to investigate the function/composition of the muscarinic acetylcholine receptor (mAChR) subtypes, M2 and M3, in the pancreatic islets of adult offspring of rats that were protein malnourished during lactation. Neonates were nursed by mothers that were fed either a low-protein (4 %, LP) or a normal-protein (23 %, NP) diet. Adult rats were pre-treated with anti-muscarinic drugs and subjected to the glucose tolerance test; the function and protein expression levels of M2mAChR and M3mAChR were determined. The LP rats were lean and hypoinsulinaemic. The selective M2mAChR antagonist methoctramine increased insulinaemia by 31 % in the NP rats and 155 % in the LP rats, and insulin secretion was increased by 32 % in the islets of the NP rats and 88 % in those of the LP rats. The selective M3mAChR antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide decreased insulinaemia by 63 % in the NP rats and 40 % in the LP rats and reduced insulin release by 41 % in the islets of the NP rats and 28 % in those of the LP rats. The protein expression levels of M2mAChR and M3mAChR were 57 % higher and 53 % lower, respectively, in the islets of the LP rats than in those of the NP rats. The expression and functional compositions of M2mAChR and M3mAChR were altered in the islets of the LP rats, as a result of metabolic programming caused by the protein-restricted diet, which might be another possible effect involved in the weak insulin secretion ability of the islets of the programmed adult rats.


Assuntos
Ração Animal/análise , Proteínas Alimentares/administração & dosagem , Células Secretoras de Insulina/fisiologia , Lactação/fisiologia , Receptores Muscarínicos/classificação , Receptores Muscarínicos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Glicemia , Dieta/veterinária , Feminino , Glucose/metabolismo , Intolerância à Glucose , Teste de Tolerância a Glucose , Homeostase , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Antagonistas Muscarínicos/farmacologia , Gravidez , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...