Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111531

RESUMO

Bone tissue engineering emerged as a solution to treat critical bone defects, aiding in tissue regeneration and implant integration. Mainly, this field is based on the development of scaffolds and coatings that stimulate cells to proliferate and differentiate in order to create a biologically active bone substitute. In terms of materials, several polymeric and ceramic scaffolds have been developed and their properties tailored with the objective to promote bone regeneration. These scaffolds usually provide physical support for cells to adhere, while giving chemical and physical stimuli for cell proliferation and differentiation. Among the different cells that compose the bone tissue, osteoblasts, osteoclasts, stem cells, and endothelial cells are the most relevant in bone remodeling and regeneration, being the most studied in terms of scaffold-cell interactions. Besides the intrinsic properties of bone substitutes, magnetic stimulation has been recently described as an aid in bone regeneration. External magnetic stimulation induced additional physical stimulation in cells, which in combination with different scaffolds, can lead to a faster regeneration. This can be achieved by external magnetic fields alone, or by their combination with magnetic materials such as nanoparticles, biocomposites, and coatings. Thus, this review is designed to summarize the studies on magnetic stimulation for bone regeneration. While providing information regarding the effects of magnetic fields on cells involved in bone tissue, this review discusses the advances made regarding the combination of magnetic fields with magnetic nanoparticles, magnetic scaffolds, and coatings and their subsequent influence on cells to reach optimal bone regeneration. In conclusion, several research works suggest that magnetic fields may play a role in regulating the growth of blood vessels, which are critical for tissue healing and regeneration. While more research is needed to fully understand the relationship between magnetism, bone cells, and angiogenesis, these findings promise to develop new therapies and treatments for various conditions, from bone fractures to osteoporosis.

2.
J Control Release ; 347: 89-103, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513211

RESUMO

Nanoparticle mediated hyperthermia has been explored as a method to increase cancer treatment efficacy by heating tumours inside-out. With that purpose, nanoparticles have been designed and their properties tailored to respond to external stimuli and convert the supplied energy into heat, therefore inducing damage to tumour cells. Moreover, the combination of hyperthermia with chemotherapy has been described as a more effective strategy due to the synergy between the high temperature and the drug's effects, also associated with a remote controlled and on-demand drug release. In this review, the methods behind nanoparticle mediated hyperthermia, namely material design, external stimuli response and energy conversion will be discussed and critically analysed. We will address the most relevant studies on hyperthermia and temperature triggered drug release for cancer treatment. Finally, the advantages, difficulties and challenges of this therapeutic strategy will be discussed, while giving insight for future developments.


Assuntos
Hipertermia Induzida , Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Hipertermia Induzida/métodos , Nanopartículas/uso terapêutico , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico
3.
Int J Pharm ; 619: 121711, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35367583

RESUMO

Exemestane has a limited aqueous solubility that leads to a very high variability in absorption when administrated orally. It is crucial to develop strategies to increase the solubility and bioavailability of this drug. To overcome these issues, the aim of the present work was the development of magnetic silica mesoporous nanoparticles (IOMSNs) to carry and release exemestane. Furthermore, these nanoparticles could be also used as Magnetic Resonance Imaging (MRI) contrast agents for treatment monitorization and tumor detection. MRI analysis showed that IOMSNs present a concentration dependent contrast effect, revealing their potential for MRI applications. Also, IOMSNs present a very good polydispersity (0.224) and nanometric range size (137.2 nm). It was confirmed that the nucleus is composed by magnetite and the silica coating presents tubes with MCM-41-like hexagonal structure. Both iron oxide nanoparticles and iron oxide mesoporous silica nanoparticles were not toxic in cell culture for 24 h. Exemestane was successful released for 72 h following a typical sustained release pattern, achieving a very high loading capacity (37.7%) and in vitro release of 98.8%. Taking into account the results it is possible to conclude that IOMSNs have a high potential to be used as theranostic for intravenous breast cancer treatment with exemestane.


Assuntos
Neoplasias da Mama , Nanopartículas , Androstadienos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Meios de Contraste/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Humanos , Nanopartículas/química , Porosidade , Medicina de Precisão , Dióxido de Silício/química
4.
J Hazard Mater ; 399: 122982, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534391

RESUMO

TiO2-nanoparticles (TiO2-NP) have the potential to impair plant development. Nevertheless, the metabolic processes behind the physiological responses to TiO2-NP are still far from being fully understood. In this study, Triticum aestivum plants were exposed for 21 days to different concentrations (0; 5; 50; 150 mg L-1) of TiO2-NP (P25). After treatment, the metabolite profiles of roots and leaves were analysed. The content of >70 % of the identified metabolites changed in response to P25 and the impact on metabolic pathways increased with TiO2-NP dose, with leaves showing higher alterations. Roots up-regulated monosaccharides, azelaic acid, and γ-aminobutanoic acid and triggered the tyrosine metabolism, whereas leaves up-regulated the metabolisms of reserve sugars and tocopherol, and the phenylalanine and tryptophan pathways. Both organs (mainly leaves) up-regulated the aspartate family pathway together with serine, alanine and valine metabolisms and the glycerolipids' biosynthesis. In addition, the citrate and glyoxylate metabolisms were down-regulated in both organs (highest dose). Sugar biosynthesis breakdown, due to photosynthetic disturbances, shifted the cell metabolism to use amino acids as an alternative energy source, and both ROS and sugars worked as signalling molecules activating organ dependent antioxidant responses. Concluding, these NP-pollutants severely impact multiple crop metabolic pathways and may ultimately compromise plant performance.


Assuntos
Nanopartículas , Triticum , Aminoácidos/metabolismo , Redes e Vias Metabólicas , Nanopartículas/toxicidade , Açúcares , Titânio/toxicidade , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...