RESUMO
The influence of genetic factors may contribute to the poor prognosis of breast cancer (BC) at a very young age. However BRCA1/2 mutations could not explain the majority of cases arising in these patients. MicroRNAs (miRs) have been implicated in biological processes associated with BC. Therefore, we investigated differences in miRs expression between tumors from young patients (≤35 years) with sporadic or familial history and non-carriers of BRCA1/2 mutations. Thirty-six young Brazilian patients were divided into 2 groups: sporadic (NF-BC) or familial breast cancer (F-BC). Most of the samples were classified as luminal A and B and the frequency of subtypes did not differ between familial or sporadic cases. Using real time qPCR and discriminant function analysis, we identified 9 miRs whose expression levels rather than miR identity can discriminate between both patient groups. Candidate predicted targets were determined by combining results from miRWalk algorithms with mRNA expression profiles (nâ=â91 differently expressed genes). MiR/mRNA integrated analysis identified 91 candidate genes showing positive or negative correlation to at least 1 of the 9 miRs. Co-expression analysis of these genes with 9 miRs indicated that 49 differentially co-expressed miR-gene interactions changes in F-BC tumors as compared to those of NF-BC tumors. Out of 49, 17 (34.6%) of predicted miR-gene interactions showed an inverse correlation suggesting that miRs act as post-transcriptional regulators, whereas 14 (28.6%) miR-gene pairs tended to be co-expressed in the same direction indicating that the effects exerted by these miRs pointed to a complex level of target regulation. The remaining 18 pairs were not predicted by our criteria suggesting involvement of other regulators. MiR-mRNA co-expression analysis allowed us to identify changes in the miR-mRNA regulation that were able to distinguish tumors from familial and sporadic young BC patients non-carriers of BRCA mutations.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal de Mama/metabolismo , MicroRNAs/metabolismo , Adulto , Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Ductal de Mama/genética , Feminino , Genes BRCA1 , Genes BRCA2 , Humanos , MicroRNAs/genética , Transcriptoma , Adulto JovemRESUMO
Germline mutations in BRCA1, BRCA2 and TP53 genes have been identified as one of the most important disease-causing issues in young breast cancer patients worldwide. The specific defective biological processes that trigger germline mutation-associated and -negative tumors remain unclear. To delineate an initial portrait of Brazilian early-onset breast cancer, we performed an investigation combining both germline and tumor analysis. Germline screening of the BRCA1, BRCA2, CHEK2 (c.1100delC) and TP53 genes was performed in 54 unrelated patients <35 y; their tumors were investigated with respect to transcriptional and genomic profiles as well as hormonal receptors and HER2 expression/amplification. Germline mutations were detected in 12 out of 54 patients (22%) [7 in BRCA1 (13%), 4 in BRCA2 (7%) and one in TP53 (2%) gene]. A cancer familial history was present in 31.4% of the unrelated patients, from them 43.7% were carriers for germline mutation (37.5% in BRCA1 and in 6.2% in the BRCA2 genes). Fifty percent of the unrelated patients with hormone receptor-negative tumors carried BRCA1 mutations, percentage increasing to 83% in cases with familial history of cancer. Over-representation of DNA damage-, cellular and cell cycle-related processes was detected in the up-regulated genes of BRCA1/2-associated tumors, whereas cell and embryo development-related processes were over-represented in the up-regulated genes of BRCA1/2-negative tumors, suggesting distinct mechanisms driving the tumorigenesis. An initial portrait of the early-onset breast cancer patients in Brazil was generated pointing out that hormone receptor-negative tumors and positive familial history are two major risk factors for detection of a BRCA1 germline mutation. Additionally, the data revealed molecular factors that potentially trigger the tumor development in young patients.