Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Osteoporos Rep ; 21(5): 493-502, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37410317

RESUMO

PURPOSE OF REVIEW: Recent advancements in "omics" technologies and bioinformatics have afforded researchers new tools to study bone biology in an unbiased and holistic way. The purpose of this review is to highlight recent studies integrating multi-omics data gathered from multiple molecular layers (i.e.; trans-omics) to reveal new molecular mechanisms that regulate bone biology and underpin skeletal diseases. RECENT FINDINGS: Bone biologists have traditionally relied on single-omics technologies (genomics, transcriptomics, proteomics, and metabolomics) to profile measureable differences (both qualitative and quantitative) of individual molecular layers for biological discovery and to investigate mechanisms of disease. Recently, literature has grown on the implementation of integrative multi-omics to study bone biology, which combines computational and informatics support to connect multiple layers of data derived from individual "omic" platforms. This emerging discipline termed "trans-omics" has enabled bone biologists to identify and construct detailed molecular networks, unveiling new pathways and unexpected interactions that have advanced our mechanistic understanding of bone biology and disease. While the era of trans-omics is poised to revolutionize our capacity to answer more complex and diverse questions pertinent to bone pathobiology, it also brings new challenges that are inherent when trying to connect "Big Data" sets. A concerted effort between bone biologists and interdisciplinary scientists will undoubtedly be needed to extract physiologically and clinically meaningful data from bone trans-omics in order to advance its implementation in the field.


Assuntos
Biologia Computacional , Genômica , Humanos , Proteômica , Metabolômica , Perfilação da Expressão Gênica
2.
Nat Commun ; 14(1): 906, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810735

RESUMO

Osteoclasts are giant bone-digesting cells that harbor specialized lysosome-related organelles termed secretory lysosomes (SLs). SLs store cathepsin K and serve as a membrane precursor to the ruffled border, the osteoclast's 'resorptive apparatus'. Yet, the molecular composition and spatiotemporal organization of SLs remains incompletely understood. Here, using organelle-resolution proteomics, we identify member a2 of the solute carrier 37 family (Slc37a2) as a SL sugar transporter. We demonstrate in mice that Slc37a2 localizes to the SL limiting membrane and that these organelles adopt a hitherto unnoticed but dynamic tubular network in living osteoclasts that is required for bone digestion. Accordingly, mice lacking Slc37a2 accrue high bone mass owing to uncoupled bone metabolism and disturbances in SL export of monosaccharide sugars, a prerequisite for SL delivery to the bone-lining osteoclast plasma membrane. Thus, Slc37a2 is a physiological component of the osteoclast's unique secretory organelle and a potential therapeutic target for metabolic bone diseases.


Assuntos
Reabsorção Óssea , Osteoclastos , Camundongos , Animais , Osteoclastos/metabolismo , Transporte Biológico , Lisossomos/metabolismo , Osso e Ossos/metabolismo , Membrana Celular/metabolismo , Reabsorção Óssea/metabolismo
3.
Front Cell Dev Biol ; 9: 644986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718388

RESUMO

During bone resorption, the osteoclast must sustain an extraordinarily low pH environment, withstand immense ionic pressures, and coordinate nutrient and waste exchange across its membrane to sustain its unique structural and functional polarity. To achieve this, osteoclasts are equipped with an elaborate set of membrane transport proteins (pumps, transporters and channels) that serve as molecular 'gatekeepers' to regulate the bilateral exchange of ions, amino acids, metabolites and macromolecules across the ruffled border and basolateral domains. Whereas the importance of the vacuolar-ATPase proton pump and chloride voltage-gated channel 7 in osteoclasts has long been established, comparatively little is known about the contributions of other membrane transport proteins, including those categorized as secondary active transporters. In this Special Issue review, we provide a contemporary update on the 'ins and outs' of membrane transport proteins implicated in osteoclast differentiation, function and bone homeostasis and discuss their therapeutic potential for the treatment of metabolic bone diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...