Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(23): 15376-15384, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175518

RESUMO

Emergent macrophyte species selection is critical for the effectiveness of nature-based engineered solutions aiming to address excess nutrient concentrations in freshwater ecosystems. Yet, the mechanisms with which macrophytes enhance nutrient retention need to be further understood. Here, we compared nutrient retention among 12 artificial flumes fed with effluents from a wastewater treatment plant and subjected to four treatments: absence of macrophytes (control) and presence of three different macrophyte species (Iris pseudacorus L., Phragmites australis L., and Schoenoplectus lacustris L.). We estimated the net and gross nutrient uptake based on the longitudinal profiles of ambient concentrations and on pulse injections of ammonium (NH4+) and soluble reactive phosphorus. Further, we investigated the influence of subsurface hydrological retention, attributed to the architectural differences in the roots of these macrophytes, on nutrient retention. Results showed a species-specific effect of macrophytes on nutrient retention and confirmed root-associated subsurface hydrological retention as a driving factor. Schoenoplectus showed both high net and gross NH4+ uptake, thereby being the most effective species to address N loading, compared to Iris and Phragmites. This work contributes to improve our mechanistic understanding of the role of emergent macrophytes on nutrient retention in aquatic environments.


Assuntos
Ecossistema , Nitrogênio , Água Doce , Nutrientes , Fósforo
2.
Sci Total Environ ; 714: 136733, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31982751

RESUMO

Wastewater treatment plant (WWTP) effluents alter stream water chemistry and metabolic activity. Yet, essential aspects influencing the biogeochemical response of receiving streams such as hydrology and diel oscillations of light and temperature remain largely unexplored. We measured day vs night water chemistry and in-stream net nutrient uptake velocity (Vf) in an intermittent forested stream, upstream and downstream of a WWTP effluent under contrasting hydrological conditions. The WWTP effluent negatively influenced stream water chemistry, especially during the dry period. Despite large diel oscillations in light inputs, day-night differences in nutrient and oxygen concentrations were small, suggesting that heterotrophic respiration drove stream metabolism with a minor contribution of gross primary production. The magnitude of Vf was similar between day and night at the two reaches. Yet, at the downstream reach, in-stream net DIN uptake occurred more often at night, and values of Vf for ammonia and nitrite indicated enhanced in-stream nitrification. The two reaches showed a small capacity to retain DIN and soluble reactive phosphorus from the water column. Positive values of in-stream net nutrient uptake (i.e. uptake > release) occurred mostly during the dry period, highlighting that in-stream biogeochemical processing can contribute to improve water quality in streams receiving point-sources effluents in regions with low water availability.

3.
J Environ Manage ; 252: 109585, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31600688

RESUMO

In the Mediterranean region, water scarcity compromises stream water quality particularly downstream of wastewater treatment plants (WWTP). We tested the potential of four helophyte species to reduce dissolved inorganic nitrogen (N) and phosphorus (P) from WWTP effluents. We conducted an 11-month mesocosm experiment to assess differences in N and P content among plant compartments and among species. Moreover, we quantified the relative contribution of above and belowground parts of the plants to N and P retention. The experiment was conducted at the Urban River Laboratory (www.urbanriverlab.com) in artificial channels (12 m long x 0.6 m wide x 0.4 m deep) planted with monospecific stands of Iris pseudoacorus, Typha angustifolia, Phragmites australis and Scirpus lacustris. Channels (three replicates per species) received water from the WWTP effluent, which flowed at a constant rate of 5 L min-1 through the sub-surface. The helophytes were planted in November 2014 and biomass standing stocks of carbon (C), N and P were measured in October 2015 at the time of maximum plant biomass. Differences in the concentration of N and P were larger among plant compartments than among species. The highest N concentration was measured in leaves while rhizomes showed the highest P concentration. The total plant biomass varied greatly among species from 11.4 to 4.6 Kg DW m-2 for Iris and Scirpus, respectively. Iris accumulated the highest amount of N (256 g N m-2) and P (27 g P m-2) in biomass. Plants retained from 8% (Scirpus) to 19% (Iris) of total dissolved inorganic N inputs to the channels (10.4 kg N) during the experiment, and from 6% (Phragmites) to 14% (Iris) of total dissolved inorganic P inputs (1.3 kg P). This study provides quantitative evidence to water managers of the potential role of helophytes to improve water quality in freshwater ecosystems receiving water from WWTP effluents.


Assuntos
Typhaceae , Águas Residuárias , Biomassa , Ecossistema , Nitrogênio , Fósforo
4.
Environ Sci Technol ; 53(13): 7613-7620, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31244076

RESUMO

Bioengineering techniques are currently used  in a wide variety of wastewater treatment systems. Aquatic plants (i.e., helophytes) used in these techniques reduce excess nitrogen (N) from water column via assimilation. Moreover, leachates from plant leaf-litter can serve as an additional source of labile dissolved organic matter (DOM), which can promote aerobic respiration and N removal via denitrification. We tested the influence of leaf-litter leachates from  Iris pseudacorus and Phragmites australis on the structure and activity of freshwater biofilms grown in flumes fed by effluent from a wastewater treatment plant (WWTP). The responses of the epilithic biofilm to the inputs of leaf-litter leachates were compared to those measured using a brewery byproduct rich in sugars and to the WWTP effluent water (i.e., control). All DOM sources significantly enhanced aerobic respiration and denitrification of the biofilm when compared to the controls, with increases in total microbial abundance but not in denitrifier abundance. The results suggest that metabolic activity of biofilms may be limited by bioavailability of DOM in WWTP effluent; and leaf-litter leachates of helophytes used in bioengineering techniques could alleviate this limitation by enhancing microbial N and C uptake.


Assuntos
Águas Residuárias , Purificação da Água , Desnitrificação , Nitrogênio , Folhas de Planta
5.
Sci Total Environ ; 599-600: 1667-1676, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28535595

RESUMO

Wastewater treatment plant (WWTP) effluents are sources of dissolved organic carbon (DOC) and inorganic nitrogen (DIN) to receiving streams, which can eventually become saturated by excess of DIN. Aquatic plants (i.e., helophytes) can modify subsurface water flowpaths as well as assimilate nutrients and enhance microbial activity in the rhizosphere, yet their ability to increase DIN transformation and removal in WWTP-influenced streams is poorly understood. We examined the influence of helophytes on DIN removal along subsurface water flowpaths and how this was associated with DOC removal and labile C availability. To do so, we used a set of 12 flow-through flumes fed with water from a WWTP effluent. The flumes contained solely sediments or sediments with helophytes. Presence of helophytes in the flumes enhanced both DIN and DOC removal. Experimental addition of a labile C source into the flumes resulted in a high removal of the added C within the first meter of the flumes. Yet, no concomitant increases in DIN removal were observed. Moreover, results from laboratory assays showed significant increases in the potential denitrifying enzyme activity of sediment biofilms from the flumes when labile C was added; suggesting denitrification was limited by C quality. Together these results suggest that lack of DIN removal response to the labile C addition in flumes was likely because potential increases in denitrification by biofilms from sediments were counterbalanced by high rates of mineralization of dissolved organic matter. Our results highlight that helophytes can enhance DIN removal in streams receiving inputs from WWTP effluents; and thus, they can become a relevant bioremediation tool in WWTP-influenced streams. However, results also suggest that the quality of DOC from the WWTP effluent can influence the N removal capacity of these systems.

6.
Ecology ; 97(5): 1329-44, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27349107

RESUMO

Large-scale factors associated with the environmental context of streams can explain a notable amount of variability in patterns of stream N cycling at the reach scale. However, when environmental factors fail to accurately predict stream responses at the reach level, focusing on emergent properties from small-scale heterogeneity in N cycling rates may help understand observed patterns in stream N cycling. To address how small-scale heterogeneity may contribute to shape patterns in whole-reach N uptake, we examined the drivers and variation in microbial N uptake at small spatial scales in two stream reaches with different environmental constraints (i.e., riparian canopy). Our experimental design was based on two ¹5N additions combined with a hierarchical sampling design from reach to microhabitat scales. Regardless of the degree of canopy cover, small-scale heterogeneity of microbial N uptake ranged by three orders of magnitude, and was characterized by a low abundance of highly active microhabitats (i.e., hot spots). The presence of those hot spots of N uptake resulted in a nonlinear spatial distribution of microbial N uptake rates within the streambed, especially in the case of epilithon assemblages. Small-scale heterogeneity in N uptake and turnover rates at the microhabitat scale was primarily driven by power relationships between N cycling rates and stream water velocity. Overall, fine benthic organic matter (FBOM) assemblages responded clearly to changes in the degree of canopy cover, overwhelming small-scale heterogeneity in its N uptake rates, and suggesting that FBOM contribution to whole-reach N uptake was principally imposed by environmental constraints from larger scales. In contrast, N uptake rates by epilithon showed no significant response to different environmental influences, but identical local drivers and spatial variation in each study reach. Therefore, contribution of epilithon assemblages to whole-reach N uptake was mainly associated with emerging properties from small-scale heterogeneity at lower spatial scales.


Assuntos
Bactérias/metabolismo , Ecossistema , Nitrogênio/metabolismo , Compostos de Amônio , Modelos Biológicos , Isótopos de Nitrogênio
7.
Environ Sci Technol ; 48(12): 6612-9, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24837817

RESUMO

Understanding the variability of the natural abundance in nitrogen stable isotopes (expressed as δ(15)N) of primary uptake compartments (PUCs; e.g., epilithon or macrophytes) is important due to the multiple applications of stable isotopes in freshwater research and can give insights into environmental and anthropogenic factors controlling N dynamics in streams. While previous research has shown how δ(15)N of PUCs varies with δ(15)N of dissolved inorganic N (DIN) among streams, less is known about how δ(15)N of PUCs varies over time. Here, we examined monthly variation of δ(15)N of PUCs and of DIN species (nitrate and ammonium) over a year, and compared it among streams with contrasting human impacts and PUC types. Our results showed no evidence of isotopic seasonal patterns. Temporal variability in δ(15)N-PUCs increased with human impact, being the highest in the urban stream, probably influenced by the high variability of δ(15)N-DIN. Among compartments, in-stream PUCs characterized by fast turnover rates, such as filamentous algae, showed the highest temporal variability in δ(15)N values (from -3.6 to 23.2 ‰). Our study elucidates some of the environmental and biological controls of temporal variability of δ(15)N in streams, which should be taken into account when using stable isotopes as an ecological tool.


Assuntos
Monitoramento Ambiental , Atividades Humanas , Nitrogênio/análise , Rios/química , Carbono/análise , Humanos , Compostos Inorgânicos/análise , Isótopos de Nitrogênio/análise , Solubilidade , Espanha , Fatores de Tempo
8.
Environ Sci Technol ; 47(18): 10155-62, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23930789

RESUMO

High variability in the natural abundance of nitrogen stable isotopes (δ(15)N) has been reported for primary uptake compartments (PUCs; e.g., epilithon, filamentous algae, bryophytes, macrophytes) in human-impacted aquatic ecosystems, but the origin of this variability is not yet well understood. We examined how δ(15)N of different PUC types relate to δ(15)N of dissolved inorganic nitrogen (DIN) species (nitrate and ammonium) and to the stream nutrient concentrations in which they grow. We selected 25 reaches located across the fluvial network of La Tordera catchment (NE Spain, 868.5 km(2)), encompassing a gradient of human pressures from headwaters to the river valley. δ(15)N-PUC variability was mostly explained by location within the fluvial network and was strongly related to the δ(15)N of DIN species, especially of ammonium. Models were stronger for PUCs growing within the stream channel and thus using streamwater as their main source of nutrients. Regression models including nutrient concentrations improved the prediction power for δ(15)N-PUCs, suggesting that nutrient concentrations and stoichiometry cannot be ignored in explaining the natural abundance of nitrogen isotopes in PUCs. These results provide insights into what controls variability in δ(15)N of PUCs within a stream network, with implications for the application of stables isotopes as an ecological tool.


Assuntos
Compostos de Amônio/análise , Nitratos/análise , Isótopos de Nitrogênio/análise , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Espanha
9.
FEMS Microbiol Ecol ; 85(1): 104-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23461285

RESUMO

Effluents from wastewater treatment plants (WWTPs) containing micro-organisms and residual nitrogen can stimulate nitrification in freshwater streams. We hypothesized that different ammonia-oxidizing (AOB) and nitrite-oxidizing (NOB) bacteria present in WWTP effluents differ in their potential to colonize biofilms in the receiving streams. In an experimental approach, we monitored biofilm colonization by nitrifiers in ammonium- or nitrite-fed microcosm flumes after inoculation with activated sludge. In a field study, we compared the nitrifier communities in a full-scale WWTP and in epilithic biofilms downstream of the WWTP outlet. Despite substantially different ammonia concentrations in the microcosms and the stream, the same nitrifiers were detected by fluorescence in situ hybridization in all biofilms. Of the diverse nitrifiers present in the WWTPs, only AOB of the Nitrosomonas oligotropha/ureae lineage and NOB of Nitrospira sublineage I colonized the natural biofilms. Analysis of the amoA gene encoding the alpha subunit of ammonia monooxygenase of AOB revealed seven identical amoA sequence types. Six of these affiliated with the N. oligotropha/ureae lineage and were shared between the WWTP and the stream biofilms, but the other shared sequence type grouped with the N. europaea/eutropha and N. communis lineage. Measured nitrification activities were high in the microcosms and the stream. Our results show that nitrifiers from WWTPs can colonize freshwater biofilms and confirm that WWTP-affected streams are hot spots of nitrification.


Assuntos
Bactérias/classificação , Biofilmes , Água Doce/microbiologia , Nitrificação , Esgotos/microbiologia , Amônia/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Hibridização in Situ Fluorescente , Nitritos/metabolismo , Nitrosomonas/genética , Nitrosomonas/isolamento & purificação , Oxirredução , Oxirredutases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...