Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 320: 115911, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961144

RESUMO

In agricultural headwater catchments, wetlands such as ponds are numerous and well known to partly dissipate contamination. Most of the pesticides are transferred from soils to the aquatic environment during flood events. This study reports the annual/seasonal behaviour of 6 pesticides (metolachlor, boscalid, epoxiconazole, tebuconazole, aclonifen and pendimethalin) in such an environment. Because it is rarely considered, the study focussed on the high frequency of the distribution of pesticides between dissolved and particulate phases, as well as the main controlling factors of their upstream-downstream transfer. The pond removal rate was calculated to evaluate the wetland efficiency in pesticide mitigation. We conducted a one-year high frequency hydrochemical survey, with particular emphasis on flood events, in the upper Auradé catchment (SW-France), an area of long-term conventional agriculture on highly erosive carbonated soils. The inlet and outlet of the pond were instrumented for water level measurements and water sampling. The highest concentrations were observed for tebuconazole and, in general, the presence of the molecules during the year depended on the season. The pond showed satisfactory efficiency in pesticide attenuation for the six molecules considered, although the removal rate depended on the molecule and the bearing phase (from 28.4% for boscalid to 89.4% for aclonifen in the dissolved phase and from 22.1% for pendimethalin to 96.8% for metolachlor in the particulate fraction). Interestingly, the more hydrophilic the molecule (low LogKOW), the more efficient the pesticide removal rate was for its particulate fraction, and the opposite for hydrophobic molecules (high LogKOW). Flood events carried a large amount of Total Suspended Solid (TSS) bearing hydrophobic molecules from a major legacy of upper catchment soils, although 52% of the pesticides were transported by the dissolved fraction. Significant resuspension of TSS from the pond was evidenced by the annual mass balance with four tons of TSS released, while the positive rate of pesticide removal involved other effective mechanisms such as exchange and complexation. Although these constructed wetlands may be beneficial for pesticide mitigation, the results highlighted the need for improved land management in the upstream catchment during the different seasons to avoid bare soils that pose a risk of high surface water contamination, especially due to the presence of hydrophobic molecules in combination with a high erosive context.


Assuntos
Praguicidas , Poluentes Químicos da Água , Agricultura , Monitoramento Ambiental , Praguicidas/química , Lagoas , Solo/química , Água , Poluentes Químicos da Água/química
2.
Chemosphere ; 298: 134293, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35307387

RESUMO

Solar drying and liming are commonly used for sludge treatment, but little is known about their efficiency on antibiotics and Polycyclic Aromatic Hydrocarbons (PAHs) removal. This study aimed to investigate the removal of antibiotics and PAHs during solar drying of Limed Sludge (LS) and Non-Limed Sludge (NLS). Thus, organic matter fractionation and 3D fluorescence were used to assess the accessibility and the complexity of organic matter. 2 experiments have been conducted using LS and NLS for 45 days of drying in a pilot scale tunnel. Physicochemical results indicated significant decrease of water content (90%) for both sludge samples within 15 days of drying. For both treatments, the removal of total organic carbon and total nitrogen was low and similar for both treatments. Through this study, it has been confirmed that liming and drying contributed to a strong modification of the organic matter quality with an increase of its accessibility. On the other hand, drying alone increased the less accessible compartments, while the presence of lime affected the interconnexion between the organic matter pools. 3D fluorescence confirmed the obtained results and indicated that LS leads to obtaining more simple molecules in the most accessible compartments, while NLS leads to obtaining more complex molecules in the less accessible compartments. In addition, solar radiations and leaching may contribute to the significant removal (p < 0.01) of roxithromycin, benzo(a)anthracene, chrysene, benzo[k]fluoranthene, benzo[a]pyrene, and benzo(g, h, i) perylene in the presence of lime. Furthermore, the evolution of organic matter pools in terms of accessibility and complexity may drive the bioavailability of these pollutants, leading to their significant removal.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Esgotos , Antibacterianos , Benzo(a)pireno , Fracionamento Químico , Hidrocarbonetos Policíclicos Aromáticos/química , Esgotos/química
3.
Chemosphere ; 211: 893-902, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30119021

RESUMO

In this work a fast analytical method for the determination of macrolides, tetracyclines and fluoroquinolones in a compost originating from a mixture of sewage sludge, palm waste and grass was developed by ultra-high performance liquid chromatography coupled to mass spectrometry (U-HPLC/MS). Antibiotics were extracted from compost by using the accelerated solvent extraction (ASE). The chromatographic separation was carried out on a T3 Cortecs C18 column using a mobile phase gradient mixture of water acidified with 1% of formic acid and acetonitrile. Recoveries of 24-30%, 53-93%, 33-57%, 69-135% and 100-171% were obtained for roxithromycin (ROX), chlortetracycline (CTC), oxytetracycline (OTC), enrofloxacin (ENR) and ciprofloxacin (CIP), respectively. As the most part of antibiotics showed significant matrix effect (ME), the method was validated using the standard addition method (SAM) to correct the observed ME. Instrumental variation, of LC/MS system, showed that 93.75% of the relative standard deviation (RSD %) are below 15%, although the organic load of extracts. This analytical method was applied to assess the fate of antibiotics during composting. Two composting experiments were conducted separately after spiking sludge at 2 different concentrations levels. The resulting elimination rates were of 52-76, 69-100, 100 and 24-50% for ROX, CTC, OTC and CIP, respectively. These results suggest that composting process contributes to the removal of residuals concentrations of macrolides and tetracyclines while the fluoroquinolones persist in the final compost product.


Assuntos
Antibacterianos/química , Cromatografia Líquida de Alta Pressão/métodos , Extração Líquido-Líquido/métodos , Espectrometria de Massas em Tandem/métodos , Antibacterianos/análise
4.
Environ Sci Pollut Res Int ; 23(5): 4138-48, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25903192

RESUMO

In this study, a bacterial strain able to use sulcotrione, a ß-triketone herbicide, as sole source of carbon and energy was isolated from soil samples previously treated with this herbicide. Phylogenetic study based on16S rRNA gene sequence showed that the isolate has 100 % of similarity with several Bradyrhizobium and was accordingly designated as Bradyrhizobium sp. SR1. Plasmid profiling revealed the presence of a large plasmid (>50 kb) in SR1 not cured under nonselective conditions. Its transfer to Escherichia coli by electroporation failed to induce ß-triketone degrading capacity, suggesting that degrading genes possibly located on this plasmid cannot be expressed in E. coli or that they are not plasmid borne. The evaluation of the SR1 ability to degrade various synthetic (mesotrione and tembotrione) and natural (leptospermone) triketones showed that this strain was also able to degrade mesotrione. Although SR1 was able to entirely dissipate both herbicides, degradation rate of sulcotrione was ten times higher than that of mesotrione, showing a greater affinity of degrading-enzyme system to sulcotrione. Degradation pathway of sulcotrione involved the formation of 2-chloro-4-mesylbenzoic acid (CMBA), previously identified in sulcotrione degradation, and of a new metabolite identified as hydroxy-sulcotrione. Mesotrione degradation pathway leads to the accumulation of 4-methylsulfonyl-2-nitrobenzoic acid (MNBA) and 2-amino-4 methylsulfonylbenzoic acid (AMBA), two well-known metabolites of this herbicide. Along with the dissipation of ß-triketones, one could observe the decrease in 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibition, indicating that toxicity was due to parent molecules, and not to the formed metabolites. This is the first report of the isolation of bacterial strain able to transform two ß-triketones.


Assuntos
Bradyrhizobium/metabolismo , Cicloexanonas/metabolismo , Herbicidas/metabolismo , Mesilatos/metabolismo , Microbiologia do Solo , 4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Cicloexanonas/toxicidade , Escherichia coli , Mesilatos/toxicidade , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...