Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 27(35): 355703, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27454897

RESUMO

In this work, GaN/InGaN/GaN nanocolumns (NCs) have been grown by molecular beam epitaxy. Selective area growth (SAG) and self-organized growth (SOG) were performed simultaneously in patterned and unpatterned regions of the same substrate, respectively. The resulting structures show different tip morphologies and structural properties due to the different polarity along the growth direction, namely Ga-polar with r-plane faceted tips for the SAG NCs and N-polar with c-plane top facet for the SOG ones. When growing Ga-polar GaN/InGaN NCs, no indium is incorporated at a substrate temperature of [Formula: see text]°C. Rather, indium incorporation takes place under the same growth conditions on the N-polar NCs. The In-incorporation is investigated by means of nano x-ray fluorescence and diffraction, high-angle annular dark-field scanning transmission electron microscopy and high-resolution transmission electron microscopy.

2.
J Phys Condens Matter ; 24(29): 295401, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22713667

RESUMO

The kinetics of luminescence of sol-gel synthesized terbium doped Y (2)SiO(5) (YSO) phosphor particles is investigated in detail with reference to Tb concentration in the 0.001%-10% range. By increasing the dopant concentration, the luminescence profile changes from a blue to a green peaked emission spectrum because of the energy transfer among centers. The inter-center energy transfer mechanism is well accounted for by the Inokuti-Hirayama (IH) kinetic model which is based on a statistical average of inter-center distance dependent decay modes of the donor luminescence. The distribution of the decay modes is implemented from the Förster-Dexter resonance theory of energy transfer by assuming a rate constant for the energy transfer by multipolar interactions between donors and acceptors. However, the experimental results recorded in the low concentration limit show the presence of green emission contributions in the luminescence spectrum which cannot be related to the Tb concentration; for this reason an additional internal energy transfer mechanism, occurring among levels of the same center, is proposed to account for the recorded emission properties. Thus, a new and more exhaustive model which includes both the internal and external energy transfer processes is considered; the proposed model allows a better explanation of the spectroscopic features of Tb related centers in YSO crystals and discloses the critical concentration and the quantum yields of the different energy transfer mechanisms.

3.
J Phys Condens Matter ; 22(34): 345503, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21403256

RESUMO

The optical properties of Tb(3+) ions in oxyorthosilicates of lutetium and yttrium (LYSO) are reported. The introduction of a small number of terbium ions (nominal content 10 ppm) generates, in the otherwise transparent absorption spectrum of the matrix, an ultraviolet absorption band peaked at about 240 nm. By exciting within the reported UV band, line shaped emissions in the 350-600 nm range are detected. These transitions are related to the (5)D(3) and (5)D(4) levels of the Tb(3+) ions and are characterized by decay times in the millisecond time domain. Analysis of the decay time measurements allows us to individuate a cross relaxation mechanism among terbium ions even at the low dopant concentration investigated. We propose a three-level kinetic model which is able to successfully reproduce the experimental data, allowing us to discriminate among the radiative and non-radiative contributions to the observed emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...