Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Oncol ; 30(5): 4904-4921, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37232828

RESUMO

Prostate cancer (PCa) continues to be the second most common malignant tumour and the main cause of oncological death in men. Investigating endogenous volatile organic metabolites (VOMs) produced by various metabolic pathways is emerging as a novel, effective, and non-invasive source of information to establish the volatilomic biosignature of PCa. In this study, headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was used to establish the urine volatilomic profile of PCa and identify VOMs that can discriminate between the two investigated groups. This non-invasive approach was applied to oncological patients (PCa group, n = 26) and cancer-free individuals (control group, n = 30), retrieving a total of 147 VOMs from various chemical families. This included terpenes, norisoprenoid, sesquiterpenes, phenolic, sulphur and furanic compounds, ketones, alcohols, esters, aldehydes, carboxylic acid, benzene and naphthalene derivatives, hydrocarbons, and heterocyclic hydrocarbons. The data matrix was subjected to multivariate analysis, namely partial least-squares discriminant analysis (PLS-DA). Accordingly, this analysis showed that the group under study presented different volatomic profiles and suggested potential PCa biomarkers. Nevertheless, a larger cohort of samples is required to boost the predictability and accuracy of the statistical models developed.


Assuntos
Segunda Neoplasia Primária , Neoplasias da Próstata , Compostos Orgânicos Voláteis , Masculino , Humanos , Compostos Orgânicos Voláteis/análise , Estudos de Viabilidade , Biomarcadores , Terpenos
2.
Metabolites ; 12(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36355153

RESUMO

Volatile organic compounds (VOCs) are a differentiated class of molecules, continuously generated in the human body and released as products of metabolic pathways. Their concentrations vary depending on pathophysiological conditions. They are detectable in a wide variety of biological samples, such as exhaled breath, faeces, and urine. In particular, urine represents an easily accessible specimen widely used in clinics. The most used techniques for VOCs detections are expensive and time-consuming, thus not allowing for rapid clinical analysis. In this perspective, the aim of this study is a comprehensive characterisation of the urine volatilome by the development of an alternative rapid analytical method. Briefly, 115 urine samples are collected; sample treatment is not needed. VOCs are detected in the urine headspace using gas chromatography coupled to ion mobility spectrometry (GC-IMS) by an extremely fast analysis (10 min). The method is analytically validated; the analysis is sensitive and robust with results comparable to those reported with other techniques. Twenty-three molecules are identified, including ketones, aldehydes, alcohols, and sulphur compounds, whose concentration is altered in several pathological states such as cancer and metabolic disorders. Therefore, it opens new perspectives for fast diagnosis and screening, showing great potential for clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...