Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microcirculation ; 30(8): e12830, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37688531

RESUMO

OBJECTIVE: Fluid shear stress is thought to be a regulator of endothelial cell behavior during angiogenesis. The link, however, requires an understanding of stress values at the capillary level in angiogenic microvascular networks. Critical questions remain. What are the stresses? Do capillaries experience similar stress magnitudes? Can variations explain vessel-specific behavior? The objective of this study was to estimate segment-specific shear stresses in angiogenic networks. METHODS: Images of angiogenic networks characterized by increased vascular density were obtained from rat mesenteric tissues stimulated by compound 48/80-induced mast cell degranulation. Vessels were identified by perfusion of a 40 kDa fixable dextran prior to harvesting and immunolabeling for PECAM. Using a network flow-based segment model with physiologically relevant parameters, stresses were computed per vessel for regions across multiple networks. RESULTS: Stresses ranged from 0.003 to 2328.1 dyne/cm2 and varied dramatically at the capillary level. For all regions, the maximum segmental shear stresses were for capillary segments. Stresses along proximal capillaries branching from arteriole inlets were increased compared to stresses along capillaries in more distal regions. CONCLUSIONS: The results highlight the variability of shear stresses along angiogenic capillaries and motivate new discussions on how endothelial cells may respond in vivo to segment-specific microenvironment during angiogenesis.


Assuntos
Capilares , Células Endoteliais , Ratos , Animais , Capilares/fisiologia , Microvasos/fisiologia , Arteríolas , Veias
2.
Methods Mol Biol ; 2441: 157-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35099735

RESUMO

Stromal vascular fraction (SVF), isolated from adipose tissue, identifies as a rich cell source comprised of endothelial cells, endothelial progenitor cells, pericytes, smooth muscle cells, fibroblasts, and immune cells. SVF represents a promising therapeutic heterogonous cell source for growing new blood microvessels due to its rich niche of cells. However, the spatiotemporal dynamics of SVF within living tissues remain largely unknown. The objective of this chapter is to describe a protocol for culturing SVF on mouse mesentery tissues in order to aid in the discovery of SVF dynamics and associated vessel growth over time. SVF was isolated from the inguinal adipose from adult mice and seeded onto mesentery tissues. Tissues were then cultured for up to 5 days and labeled with endothelial cell and pericyte markers. Representative results demonstrate the observation of SVF-derived vasculogenesis characterized by de novo vessel formation and subsequent vessel connection.


Assuntos
Células Endoteliais , Células Estromais , Tecido Adiposo , Animais , Células Cultivadas , Mesentério , Camundongos , Fração Vascular Estromal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...