Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Sci ; 10(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37104456

RESUMO

Adverse effects associated with overdose of NSAIDs are rarely reported in cattle, and the risk level is unknown. If high doses of NSAIDs can be safely administered to cattle, this may provide a longer duration of analgesia than using current doses where repeated administration is not practical. Meloxicam was administered to 5 mid-lactation Holstein dairy cows orally at 30 mg/kg, which is 30 times higher than the recommended 1 mg/kg oral dose. Plasma and milk meloxicam concentrations were determined using high-pressure liquid chromatography with mass spectroscopy (HPLC-MS). Pharmacokinetic analysis was performed by using noncompartmental analysis. The geometric mean maximum plasma concentration (Cmax) was 91.06 µg/mL at 19.71 h (Tmax), and the terminal elimination half-life (T1/2) was 13.79 h. The geometric mean maximum milk concentration was 33.43 µg/mL at 23.74 h, with a terminal elimination half-life of 12.23 h. A thorough investigation into the potential adverse effects of a meloxicam overdose was performed, with no significant abnormalities reported. The cows were humanely euthanized at 10 d after the treatment, and no gross or histologic lesions were identified. As expected, significantly higher plasma and milk concentrations were attained after the administration of 30 mg/kg meloxicam with similar half-lives to previously published reports. However, no identifiable adverse effects were observed with a drug dose 30 times greater than the industry uses within 10 days of treatment. More research is needed to determine the tissue withdrawal period, safety, and efficacy of meloxicam after a dose of this magnitude in dairy cattle.

2.
Sci Rep ; 9(1): 12103, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431630

RESUMO

The primary hurdle for diagnosis of some diseases is the long incubation required to culture and confirm the presence of bacteria. The concept of using microbial VOCs as "signature markers" could provide a faster and noninvasive diagnosis. Finding biomarkers is challenging due to the specificity required in complex matrices. The objectives of this study were to (1) build/test a lab-scale platform for screening of microbial VOCs and (2) apply it to Mycobacterium avium paratuberculosis; the vaccine strain of M. bovis Bacillus Calmette-Guérin; and M. kansasii to demonstrate detection times greater those typically required for culture. SPME-GC-MS was used for sampling, sample preparation, and analyses. For objective (1), a testing platform was built for headspace sampling of bacterial cultures grown in standard culture flasks via a biosecure closed-loop circulating airflow system. For (2), results show that the suites of VOCs produced by Mycobacteria ssp. change over time and that individual strains produce different VOCs. The developed method was successful in discriminating between strains using a pooled multi-group analysis, and in timepoint-specific multi- and pair-wise comparisons. The developed testing platform can be useful for minimally invasive and biosecure collection of biomarkers associated with human, wildlife and livestock diseases for development of diagnostic point-of-care and field surveillance.


Assuntos
Doenças dos Bovinos/sangue , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/sangue , Compostos Orgânicos Voláteis/isolamento & purificação , Animais , Biomarcadores/sangue , Bovinos , Doenças dos Bovinos/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Mycobacterium avium subsp. paratuberculosis/patogenicidade , Paratuberculose/microbiologia , Compostos Orgânicos Voláteis/sangue
3.
Molecules ; 24(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717185

RESUMO

In this research, we propose a novel concept for a non-destructive evaluation of volatiles emitted from ripening grapes using solid-phase microextraction (SPME). This concept is novel to both the traditional vinifera grapes and the cold-hardy cultivars. Our sample models are cold-hardy varieties in the upper Midwest for which many of the basic multiyear grape flavor and wine style data is needed. Non-destructive sampling included a use of polyvinyl fluoride (PVF) chambers temporarily enclosing and concentrating volatiles emitted by a whole cluster of grapes on a vine and a modified 2 mL glass vial for a vacuum-assisted sampling of volatiles from a single grape berry. We used SPME for either sampling in the field or headspace of crushed grapes in the lab and followed with analyses on gas chromatography-mass spectrometry (GC-MS). We have shown that it is feasible to detect volatile organic compounds (VOCs) emitted in-vivo from single grape berries (39 compounds) and whole clusters (44 compounds). Over 110 VOCs were released to headspace from crushed berries. Spatial (vineyard location) and temporal variations in VOC profiles were observed for all four cultivars. However, these changes were not consistent by growing season, by location, within cultivars, or by ripening stage when analyzed by multivariate analyses such as principal component analysis (PCA) and hierarchical cluster analyses (HCA). Research into aroma compounds present in cold-hardy cultivars is essential to the continued growth of the wine industry in cold climates and diversification of agriculture in the upper Midwestern area of the U.S.


Assuntos
Frutas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Vitis/metabolismo , Compostos Orgânicos Voláteis/isolamento & purificação , Fazendas , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Humanos , Iowa , Análise Multivariada , Polivinil , Análise de Componente Principal , South Dakota , Vitis/química , Vitis/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/classificação , Vinho/análise
4.
Molecules ; 24(3)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678060

RESUMO

Finding farm-proven, robust sampling technologies for measurement of odorous volatile organic compounds (VOCs) and evaluating the mitigation of nuisance emissions continues to be a challenge. The objective of this research was to develop a new method for quantification of odorous VOCs in air using time-weighted average (TWA) sampling. The main goal was to transform a fragile lab-based technology (i.e., solid-phase microextraction, SPME) into a rugged sampler that can be deployed for longer periods in remote locations. The developed method addresses the need to improve conventional TWA SPME that suffers from the influence of the metallic SPME needle on the sampling process. We eliminated exposure to metallic parts and replaced them with a glass tube to facilitate diffusion from odorous air onto an exposed SPME fiber. A standard gas chromatography (GC) liner recommended for SPME injections was adopted for this purpose. Acetic acid, a common odorous VOC, was selected as a model compound to prove the concept. GC with mass spectrometry (GC⁻MS) was used for air analysis. An SPME fiber exposed inside a glass liner followed the Fick's law of diffusion model. There was a linear relationship between extraction time and mass extracted up to 12 h (R² > 0.99) and the inverse of retraction depth (1/Z) (R² > 0.99). The amount of VOC adsorbed via the TWA SPME using a GC glass liner to protect the SPME was reproducible. The limit of detection (LOD, signal-to-noise ratio (S/N) = 3) and limit of quantification (LOQ, S/N = 5) were 10 and 18 µg·m-3 (4.3 and 7.2 ppbV), respectively. There was no apparent difference relative to glass liner conditioning, offering a practical simplification for use in the field. The new method related well to field conditions when comparing it to the conventional method based on sorbent tubes. This research shows that an SPME fiber exposed inside a glass liner can be a promising, practical, simple approach for field applications to quantify odorous VOCs.


Assuntos
Monitoramento Ambiental , Odorantes/análise , Compostos Orgânicos Voláteis/química , Fibras na Dieta , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Manejo de Espécimes
5.
Foods ; 8(1)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654477

RESUMO

The Midwest wine industry has shown a marked increase in growers, hectares planted, wineries, and wine production. This growth coincides with the release of cold-hardy cultivars such as Brianna and Frontenac gris, in 2001 and 2003, respectively. These white grape varieties account for one-third of the total area grown in the state of Iowa. It is generally accepted that the wine aroma profile plays a crucial role in developing a local, sustainable brand. However, the identity of Brianna/Frontenac Gris-based wine aromas and their link to the grape berry chemistry at harvest is unknown. This study aims to preliminarily characterize key odor-active compounds that can influence the aroma profile in wines made from Brianna and Frontenac gris grapes harvested at different stages of ripening. Brianna and Frontenac gris grapes were harvested approximately 7 days apart, starting at 15.4 °Brix (3.09 pH) and 19.5 °Brix (3.00 pH), respectively. Small batch fermentations were made for each time point with all juices adjusted to the same °Brix prior to fermentation. Odor-active compounds were extracted from wine headspace using solid-phase microextraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS) and simultaneous olfactometry (O). Over 30 odor-active compounds were detected. Aromas in Brianna wines developed from "cotton candy" and "floral", to "banana" and "butterscotch", then finally to "honey", "caramel" and an unknown neutral aroma. Frontenac gris wines changed from an unknown neutral aroma to "fruity" and "rose". Results from the lay audiences' flavor and aroma descriptors also indicate a shift with harvest date and associated °Brix. To date, this is the first report of wine aromas from Brianna and Frontenac gris by GC-MS-O. Findings from this research support the hypothesis that aroma profiles of Brianna and Frontenac gris wines can be influenced by harvesting the grapes at different stages of ripening.

6.
PLoS One ; 12(7): e0179914, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686691

RESUMO

Bovine tuberculosis is a zoonotic disease of global public health concern. Development of diagnostic tools to improve test accuracy and efficiency in domestic livestock and enable surveillance of wildlife reservoirs would improve disease management and eradication efforts. Use of volatile organic compound analysis in breath and fecal samples is being developed and optimized as a means to detect disease in humans and animals. In this study we demonstrate that VOCs present in fecal samples can be used to discriminate between non-vaccinated and BCG-vaccinated cattle prior to and after Mycobacterium bovis challenge.


Assuntos
Vacina BCG , Fezes/microbiologia , Tuberculose Bovina/prevenção & controle , Compostos Orgânicos Voláteis/isolamento & purificação , Animais , Animais Domésticos , Animais Selvagens , Bovinos , Humanos , Mycobacterium bovis/isolamento & purificação , Mycobacterium bovis/patogenicidade , Tuberculose Bovina/microbiologia
7.
PLoS One ; 10(12): e0144160, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26657499

RESUMO

Recent U.S. legislation permitting recreational use of marijuana in certain states brings the use of marijuana odor as probable cause for search and seizure to the forefront of forensic science, once again. This study showed the use of solid-phase microextraction with multidimensional gas chromatography--mass spectrometry and simultaneous human olfaction to characterize the total aroma of marijuana. The application of odor activity analysis offers an explanation as to why high volatile chemical concentration does not equate to most potent odor impact of a certain compound. This suggests that more attention should be focused on highly odorous compounds typically present in low concentrations, such as nonanal, decanol, o-cymene, benzaldehyde, which have more potent odor impact than previously reported marijuana headspace volatiles.


Assuntos
Cannabis/química , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Cannabis/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Limiar Sensorial , Olfato , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/isolamento & purificação
8.
Forensic Sci Int ; 257: 257-270, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26427020

RESUMO

This report highlights the importance of an individual chemical's odor impact in the olfactory identification of marijuana, cocaine, and heroin. There are small amounts of highly odorous compounds present in headspace of these drugs, with very low odor detection thresholds, that are more likely responsible for contributing to the overall odor of these drugs. Previous reports of the most abundant compounds in headspace can mislead researchers when dealing with whole odor of these drugs. Surrogate scent formulations, therefore, must match the odor impact of key compounds and not just the chemical abundance of compounds. The objective of this study was to compare odorous volatile organic compounds (VOCs) emitted from illicit drug samples of marijuana, cocaine, and heroin to surrogate smell formulations using simultaneous sensory (via human olfaction) and chemical analyses. Use of solid phase microextraction (SPME) allowed VOCs in drug headspace to be extracted and pre-concentrated on site, and analyzed by multidimensional gas chromatography-mass spectrometry-olfactometry (MDGC-MS-O). Use of MDGC-MS-O allowed for further separation of odorous compounds and simultaneous detection by the human nose of the separate odor parts that make up the total aroma of these drugs. The compounds most abundant in headspace were not the most odor impactful when ranked by odor activity values (OAVs) (defined as ratio of concentration to odor detection threshold, ODT). There were no apparent correlations between concentrations and OAVs. A 1g marijuana surrogate lacked in odor active acids, aldehydes, ethers, hydrocarbons, N-containing, and S-containing VOCs and was overabundant in odor active alcohols and aromatics compared with real marijuana. A 1g cocaine surrogate was overabundant in odor active alcohols, aldehydes, aromatics, esters, ethers, halogenates, hydrocarbons, ketones and N-containing compounds compared with real. A 1g heroin surrogate should contain less odor active acids, alcohols, aromatics, esters, ketones, and N-containing compounds. Drug quantity, age and adulterants can affect VOC emissions and their odor impact. The concept of odor activity value, then, is useful to researchers without access to more sophisticated instrumentation. Odor activity values can be calculated from published odor detection thresholds. More research is warranted to expand the database, and determine odor detection thresholds for compounds of interest. Additional information could be obtained from establishing ODTs of key odorants for canines.


Assuntos
Cannabis/química , Cocaína/química , Heroína/química , Drogas Ilícitas/química , Odorantes/análise , Olfatometria , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise
9.
BMC Vet Res ; 11: 26, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25886555

RESUMO

BACKGROUND: Deep digital septic conditions represent some of the most refractory causes of severe lameness in cattle. The objective of this study was to determine the distribution of tulathromycin, gamithromycin and florfenicol into the synovial fluid of the metatarsophalangeal (MTP) joint of cattle after single subcutaneous administration of drug to evaluate the potential usefulness of these single-dose, long-acting antimicrobials for treating bacterial infections of the joints in cattle. RESULTS: Twelve cross-bred beef cows were randomly assigned to one of the drugs. Following subcutaneous administration, arthrocentesis of the left metatarsophalangeal joint was performed at various time points up to 240 hours post-injection, and samples were analyzed for drug concentration. In synovial fluid, florfenicol pharmacokinetic parameters estimates were: mean Tmax 7 +/- 2 hours, mean t½ 64.9 +/- 20.1 hours and mean AUC0-inf 154.0 +/- 26.2 ug*h/mL. Gamithromycin synovial fluid pharmacokinetic parameters estimates were: mean Tmax 8 hours, mean t½ 77.9 +/- 30.0 hours, and AUC0-inf 6.5 +/- 2.9 ug*h/mL. Tulathromycin pharmacokinetic parameters estimates in synovial fluid were: Tmax 19 +/- 10 hours, t½ 109 +/- 53.9 hours, and AUC0-inf 57.6 +/- 28.2 ug h/mL. CONCLUSIONS: In conclusion, synovial fluid concentrations of all three antimicrobials were higher for a longer duration than that of previously reported plasma values. Although clinical data are needed to confirm microbiological efficacy, florfenicol achieved a synovial fluid concentration greater than the MIC90 for F. necrophorum for at least 6 days.


Assuntos
Bovinos/metabolismo , Dissacarídeos/farmacocinética , Compostos Heterocíclicos/farmacocinética , Macrolídeos/farmacocinética , Líquido Sinovial/metabolismo , Tianfenicol/análogos & derivados , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Área Sob a Curva , Dissacarídeos/administração & dosagem , Feminino , Meia-Vida , Compostos Heterocíclicos/administração & dosagem , Injeções Subcutâneas , Macrolídeos/administração & dosagem , Tianfenicol/administração & dosagem , Tianfenicol/farmacocinética
10.
Data Brief ; 5: 653-706, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26958621

RESUMO

Volatile compounds emitted into headspace from illicit street drugs have been identified, but until now odor impact of these compounds have not been reported. Data in support of identification of these compounds and their odor impact to human nose are presented. In addition, data is reported on odor detection thresholds for canines highlighting differences with human ODTs and needs to address gaps in knowledge. New data presented here include: (1) compound identification, (2) gas chromatography (GC) column retention times, (3) mass spectral data, (4) odor descriptors from 2 databases, (5) human odor detection thresholds from 2 databases, (6) calculated odor activity values, and (7) subsequent ranking of compounds by concentration and ranking of compounds by odor impact (reported as calculated odor activity values). For further interpretation and discussion, see Rice and Koziel [1] and Rice [2].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...