Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(11): e2105619, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064635

RESUMO

The recent introduction of slow vacuum filtration (SVF) technology has shown great promise for reproducibly creating high-quality, large-area aligned films of single-wall carbon nanotubes (SWCNTs) from solution-based dispersions. Despite clear advantages over other SWCNT alignment techniques, SVF remains in the developmental stages due to a lack of an agreed-upon alignment mechanism, a hurdle which hinders SVF optimization. In this work, the filter membrane surface is modified to show how the resulting SWCNT nematic order can be significantly enhanced. It is observed that directional mechanical grooving on filter membranes does not play a significant role in SWCNT alignment, despite the tendency for nanotubes to follow the groove direction. Chemical treatments to the filter membrane are shown to increase SWCNT alignment by nearly 1/3. These findings suggest that membrane surface structure acts to create a directional flow along the filter membrane surface that can produce global SWCNT alignment during SVF, rather serving as an alignment template.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Vácuo
2.
J Phys Chem Lett ; 12(11): 2892-2899, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33724845

RESUMO

We describe a study of the magneto-optical properties of Ag+-doped CdSe colloidal nanoplatelets (NPLs) that were grown using a novel doping technique. In this work, we used magnetic circularly polarized luminescence and magnetic circular dichroism spectroscopy to study light-induced magnetism for the first time in 2D solution-processed structures doped with nominally nonmagnetic Ag+ impurities. The excitonic circular polarization (PX) and the exciton Zeeman splitting (ΔEZ) were recorded as a function of the magnetic field (B) and temperature (T). Both ΔEZ and PX have a Brillouin-function-like dependence on B and T, verifying the presence of paramagnetism in Ag+-doped CdSe NPLs. The observed light-induced magnetism is attributed to the transformation of nonmagnetic Ag+ ions into Ag2+, which have a nonzero magnetic moment. This work points to the possibility of incorporating these nanoplatelets into spintronic devices, in which light can be used to control the spin injection.

3.
Small ; 16(42): e2003892, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32986308

RESUMO

Reliably determining the physical properties of ice (e.g., crystal structure, adhesion strength, interfacial state, and molecular orientation) has proven to be both challenging and highly dependent on experiment-specific conditions, including surface roughness, ice formation, water purity, and measurement method. Here, non-destructive measurements of single-layer graphene (SLG) interfaced with bulk ice are used to determine temperature-dependent, ice-induced strain and estimate ice-created strain elastic density in SLG. The use of SLG enables the precise study of interfacial strain by monitoring the 2D Raman mode. Upon ice formation, a clear, ≈2 cm-1 decrease in the 2D mode frequency is observed, which is ascribed to a 0.012% biaxial tensile shear strain at the ice-SLG interface. From this shear strain value, the ice-created SLG elastic strain energy density is estimated to be 2.4 µJ m-2 . In addition to these Raman strain measurements, intentionally ionized water is used to show that water-mediated charging of the SLG surface manifests itself in a distinctly different manner than ice-induced strain. Finally, the localized nature of the Raman probe is used to map SLG regions with and without ice, suggesting that this method cannot only determine ice-induced interfacial strain, but also correlate ice adhesion properties with surface roughness and topology.

4.
Nano Lett ; 19(10): 7256-7264, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31507183

RESUMO

Over the past decade, substantial progress has been made in the chemical control (chiral enrichment, length sorting, handedness selectivity, and filling substance) of single-wall carbon nanotubes (SWCNTs). Recently, it was shown that large, horizontally aligned films can be created out of postprocessed SWCNT solutions. Here, we use machine-vision automation and parallelization to simultaneously produce globally aligned SWCNT films using pressure-driven filtration. Feedback control enables filtration to occur with a constant flow rate that not only improves the nematic ordering of the SWCNT films but also provides the ability to align a wide range of SWCNT types and on a variety of nanoporous membranes using the same filtration parameters. Using polarized optical spectroscopic techniques, we show that under standard implementation, meniscus combing produces a two-dimensional radial SWCNT alignment on one side of the film. After we flatten the meniscus through silanization, spatially resolved nematicity maps on both sides of the SWCNT film reveal global alignment across the entire structure. From experiments changing ionic strength and membrane charging, we provide evidence that the SWCNT alignment mechanism stems from an interplay of intertube interactions and ordered membrane charging. This work opens up the possibility of creating globally aligned SWCNT film structures for a new generation of nanotube electronics and optical control elements.

5.
J Phys Chem Lett ; 9(17): 4841-4847, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30085684

RESUMO

Semiconducting single-walled carbon nanotubes' (SWCNTs) broad absorption range and all-carbon composition make them attractive materials for light harvesting. We report photoinduced charge transfer from both multichiral and single-chirality SWCNT films into atomically flat SnO2 and TiO2 crystals. Higher-energy second excitonic SWCNT transitions produce more photocurrent, demonstrating carrier injection rates are competitive with fast hot-exciton relaxation processes. A logarithmic relationship exists between photoinduced electron-transfer driving force and photocarrier collection efficiency, becoming more efficient with smaller diameter SWCNTs. Photocurrents are generated from both conventional sensitization and in the opposite direction with the semiconductor under accumulation and acting as an ohmic contact with only the p-type nanotubes. Finally, we demonstrate that SWCNT surfactant choice and concentration play a large role in photon conversion efficiency and present methods of maximizing photocurrent yields.

6.
ACS Nano ; 11(8): 8471-8477, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28752997

RESUMO

We report the synthesis of ultrathin silver sulfide (Ag2S) nanoplatelets (NPLs) synthesized via a one-pot method in ethylene glycol with 3-mercaptopropionic acid serving as both the sulfur precursor and the platelet ligand. The colloidally synthesized nanoplatelets are exceptionally thin, with a thickness of only 3.5 ± 0.2 Å and a 1S exciton Bohr diameter to confinement ratio of ∼12.6. The NPL growth is shown to be quantized by layer thickness using absorption and photoluminescence (PL) spectroscopy. Transmission electron microscopy, atomic force microscopy, and X-ray diffraction analyses of the NPLs show that they correspond to the (202) plane of the ß-Ag2S structure. The PL quantum yield of these NPLs is ∼30%, suggesting their potential use in biomedical imaging. Optoelectronic properties were evaluated via sensitized photocurrent spectroscopy with the resulting spectra closely matching the distinctive absorption spectral shape of the Ag2S NPLs.


Assuntos
Nanopartículas/química , Compostos de Prata/química , Coloides/química , Microscopia Eletrônica de Transmissão , Difração de Raios X
7.
Nat Nanotechnol ; 11(2): 137-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26595331

RESUMO

Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn(2+), Co(2+) and so on) couple to band carriers via strong sp-d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical fluctuations of N spins are expected to generate giant effective magnetic fields Beff, which should dramatically impact carrier spin dynamics, even in the absence of any applied field. Here we directly and unambiguously reveal the large Beff that exist in Mn(2+)-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300-600 GHz) spin precession of photoinjected electrons is observed, indicating Beff ∼ 15 -30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. These signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn(2+) moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.

8.
J Phys Chem Lett ; 5(23): 4105-9, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26278940

RESUMO

We compare the absorption, photoluminescence, and magneto-optical properties of colloidal CuInS2 (CIS) nanocrystals with two closely related and well-understood binary analogs: Cu-doped ZnSe nanocrystals and CdSe nanocrystals. In contrast with conventional CdSe, both CIS and Cu-doped ZnSe nanocrystals exhibit a substantial energy separation between emission and absorption peaks (Stokes shift) and a marked asymmetry in the polarization-resolved low-temperature magneto-photoluminescence, both of which point to the role of localized dopant/defect states in the forbidden gap. Surprisingly, we find evidence in CIS nanocrystals of spin-exchange coupling between paramagnetic moments in the nanocrystal and the conduction/valence bands of the host lattice, a behavior also observed in Cu-doped ZnSe nanocrystals, where the copper atoms incorporate as paramagnetic Cu(2+) ions.

9.
ACS Nano ; 6(3): 2165-73, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22324937

RESUMO

We have observed a nearly 4-fold increase in the electron spin resonance (ESR) signal from an ensemble of single-walled carbon nanotubes (SWCNTs) due to oxygen desorption. By performing temperature-dependent ESR spectroscopy both before and after thermal annealing, we found that the ESR in SWCNTs can be reversibly altered via the molecular oxygen content in the samples. Independent of the presence of adsorbed oxygen, a Curie law (spin susceptibility ∝ 1/T) is seen from ~4 to 300 K, indicating that the probed spins are finite-level species. For both the pre-annealed and post-annealed sample conditions, the ESR line width decreased as the temperature was increased, a phenomenon we identify as motional narrowing. From the temperature dependence of the line width, we extracted an estimate of the intertube hopping energy; for both sample conditions, we found this hopping energy to be ~1.2 meV. Since the spin hopping energy changes only slightly when oxygen is desorbed, we conclude that only the spin susceptibility, not spin transport, is affected by the presence of physisorbed molecular oxygen in SWCNT ensembles. Surprisingly, no line width change is observed when the amount of oxygen in the SWCNT sample is altered, contrary to other carbonaceous systems and certain 1D conducting polymers. We hypothesize that physisorbed molecular oxygen acts as an acceptor (p-type), compensating the donor-like (n-type) defects that are responsible for the ESR signal in bulk SWCNTs.


Assuntos
Nanotubos de Carbono/química , Oxigênio/química , Adsorção , Espectroscopia de Ressonância de Spin Eletrônica , Movimento (Física) , Temperatura
10.
ACS Nano ; 4(4): 1955-62, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20302343

RESUMO

We have used resonant Raman scattering spectroscopy to fully analyze the relative abundances of different (n,m) species in single-walled carbon nanotube samples that are metallically enriched by density gradient ultracentrifugation. Strikingly, the data clearly show that our density gradient ultracentrifugation process enriches the metallic fractions in armchair and near-armchair species. We observe that armchair carbon nanotubes constitute more than 50% of each (2n + m) family.

11.
Nano Lett ; 9(7): 2610-3, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19492842

RESUMO

We describe a film of highly aligned single-walled carbon nanotubes that acts as an excellent terahertz linear polarizer. There is virtually no attenuation (strong absorption) when the terahertz polarization is perpendicular (parallel) to the nanotube axis. From the data, the reduced linear dichrosim was calculated to be 3, corresponding to a nematic order parameter of 1, which demonstrates nearly perfect alignment as well as intrinsically anisotropic terahertz response of single-walled carbon nanotubes in the film.


Assuntos
Nanotubos de Carbono/química , Anisotropia , Teste de Materiais , Microscopia de Polarização , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...