Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(27): 6918-6926, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38935645

RESUMO

Plasma-driven solution electrochemistry (PDSE) uses plasma-generated reactive species to drive redox reactions in solution. Nonthermal, atmospheric pressure plasmas, when irradiating water, produce many redox species. While PDSE is a promising chemical tool, there is limited insight into the mechanisms of the reactions due to the variety of short-lived reagents produced. In this study, we use aniline as a model system for studying redox mechanisms of PDSE. We show that the plasma irradiation of aqueous aniline solutions drives the formation of polyaniline oligomer, which is suppressed under acidic starting conditions. The addition of (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO), a radical scavenger, decreases the formation of oligomer by 80%, and the addition of superoxide dismutase fully hinders oligomerization. These results lead us to conclude that the oligomerization of aniline by plasma irradiation is initiated by superoxide. This discovery provides novel insights into PDSE mechanisms and illustrates a potential method of harnessing superoxide for chemical reactions.

2.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38436446

RESUMO

Many applications involving plasma-liquid interactions depend on the reactive processes occurring at the plasma-liquid interface. We report on a falling liquid film plasma reactor allowing for in situ optical absorption measurements of the time-dependence of the ferricyanide/ferrocyanide redox reactivity, complemented with ex situ measurement of the decomposition of formate. We found excellent agreement between the measured decomposition percentages and the diffusion-limited decomposition of formate by interfacial plasma-enabled reactions, except at high pH in thin liquid films, indicating the involvement of previously unexplored plasma-induced liquid phase chemistry enabled by long-lived reactive species. We also determined that high pH facilitates a reduction-favoring environment in ferricyanide/ferrocyanide redox solutions. In situ conversion measurements of a 1:1 ferricyanide/ferrocyanide redox mixture exceed the measured ex situ conversion and show that conversion of a 1:1 ferricyanide/ferrocyanide mixture is strongly dependent on film thickness. We identified three dominant processes: reduction faster than ms time scales for film thicknesses >100 µm, •OH-driven oxidation on time scales of <10 ms, and reduction on 15 ms time scales for film thickness <100 µm. We attribute the slow reduction and larger formate decomposition at high pH to HO2- formed from plasma-produced H2O2 enabled by the high pH at the plasma-liquid interface as confirmed experimentally and by computed reaction rates of HO2- with ferricyanide. Overall, this work demonstrates the utility of liquid film reactors in enabling the discovery of new plasma-interfacial chemistry and the utility of atmospheric plasmas for electrodeless electrochemistry.

3.
ACS Phys Chem Au ; 4(1): 1-18, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38283786

RESUMO

Femtosecond stimulated Raman spectroscopy (FSRS) is a powerful nonlinear spectroscopic technique that probes changes in molecular and material structure with high temporal and spectral resolution. With proper spectral interpretation, this is equivalent to mapping out reactive pathways on highly anharmonic excited-state potential energy surfaces with femtosecond to picosecond time resolution. FSRS has been used to examine structural dynamics in a wide range of samples, including photoactive proteins, photovoltaic materials, plasmonic nanostructures, polymers, and a range of others, with experiments performed in multiple groups around the world. As the FSRS technique grows in popularity and is increasingly implemented in user facilities, there is a need for a widespread understanding of the methodology and best practices. In this review, we present a practical guide to FSRS, including discussions of instrumentation, as well as data acquisition and analysis. First, we describe common methods of generating the three pulses required for FSRS: the probe, Raman pump, and actinic pump, including a discussion of the parameters to consider when selecting a beam generation method. We then outline approaches for effective and efficient FSRS data acquisition. We discuss common data analysis techniques for FSRS, as well as more advanced analyses aimed at extracting small signals on a large background. We conclude with a discussion of some of the new directions for FSRS research, including spectromicroscopy. Overall, this review provides researchers with a practical handbook for FSRS as a technique with the aim of encouraging many scientists and engineers to use it in their research.

4.
J Phys Chem Lett ; 11(18): 7502-7509, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32845635

RESUMO

The atomic motions that make up phonons and molecular vibrations in molecular crystals influence their photophysical and electronic properties, including polaron formation, carrier mobility, and phase transitions. Discriminating between spectator and driving motions is a significant challenge hindering optimization. Unlocking this information and developing fine-tuned controls over actively participating phonon modes would not only lead to a stronger understanding of photochemistry but also provide a significant new tool in controlling solid state chemistry. We present a strategy using rationally designed double pulses to unveil the unique function of specific excited state phonon modes. Using ultrafast spectroscopy, we identified 50 and 90 cm-1 phonons involved in modulating the photoinduced spin-Peierls melting of potassium tetracyanoquinodimethane crystals. We show that the 50 cm-1 phonon specifically corresponds to the coherent nuclear wavepacket involved in the charge transfer component of the overall spin-Peierls phase melting process, while the 90 cm-1 phonon facilitates the phase transition component.

5.
J Chem Phys ; 153(3): 030901, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716161

RESUMO

Femtosecond stimulated Raman spectroscopy (FSRS) is a chemically specific vibrational technique that has the ability to follow structural dynamics during photoinduced processes such as charge transfer on the ultrafast timescale. FSRS has a strong background in following structural dynamics and elucidating chemical mechanisms; however, its use with solid-state materials has been limited. As photovoltaic and electronic devices rely on solid-state materials, having the ability to track the evolving dynamics during their charge transfer and transport processes is crucial. Following the structural dynamics in these solid-state materials will lead to the identification of specific chemical structures responsible for various photoinduced charge transfer reactions, leading to a greater understanding of the structure-function relationships needed to improve upon current technologies. Isolating the specific nuclear motions and molecular structures that drive a desired physical process will provide a chemical blueprint, leading to the rational design and fabrication of efficient electronic and photovoltaic devices. In this perspective, we discuss technical challenges and experimental developments that have facilitated the use of FSRS with solid-state samples, explore previous studies that have identified structure-function relationships in charge transfer reactions, and analyze the future developments that will broaden and advance the field.

6.
J Phys Chem A ; 123(37): 7932-7939, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31486646

RESUMO

Femtosecond stimulated Raman spectroscopy (FSRS) is a useful technique for uncovering chemical reaction dynamics by acquiring high-resolution Raman spectra with ultrafast time resolution. However, in FSRS, it can be challenging to discern Raman features from signals arising from transient absorption and other four-wave mixing pathways. To overcome this difficulty, we combine the principles of shifted excitation Raman difference spectroscopy with a simple fixed frequency comb to perform dual-frequency Raman pump FSRS. Through the addition of only two mirrors and a slit to the standard FSRS setup, this method provides Raman spectra at two different excitation wavelengths that can be processed by an automated algorithm to reconstruct the Raman spectrum. Here, we demonstrate the utility of dual-frequency Raman pump FSRS to easily identify Raman signatures by visual inspection for excited-state and ground-state spectra, both on- and off-resonance. We show that previously assigned short-lived vibrations of photoexcited ß-carotene are actually not vibrational in nature. We also use crystalline betaine-30 as a challenging test case for this method, as the FSRS spectra contain a number of narrow transient vibronic and non-SRS features. By reliably reducing interference from background signals, the interpretation is substantially more quantitative and enables the future study of new systems, particularly those with small Raman cross-sections or solid-state samples with narrow vibronic features.

7.
J Phys Chem Lett ; 8(7): 1331-1337, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28267336

RESUMO

We show how heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy can discriminate between the excitonic and monomeric properties of a helical, nanotube molecular aggregate by monitoring the phase of the VSFG emission associated with different polarization configurations. By keeping track of the "phase acrobatics" associated with the added phase of the nonresonant SFG emission of gold as well as that of the double-resonance conditions achieved when the SF frequency is resonant with an electronic exciton transition, we discover that for aggregates of tetra(sulfonatophenyl)porphyrin (TSPP) the PPP-polarized spectra exhibit double-resonance conditions while SSP-polarized spectra exhibit resonance only with the ground-state vibration. Along with observed shifts in the vibrational frequency, intensity differences, and sign flips in the imaginary second-order susceptibility, χs,Im(2), we conclude that PPP-polarized HD-VSFG spectra reflect the delocalized, excitonic nature of the molecular aggregate, while the SSP-polarized HD-VSFG spectra measure the localized, monomeric nature of the molecular subunits. It is implied from this study that HD-VSFG spectroscopy can be uniquely utilized to measure the excitonic and monomeric properties associated with molecular assemblies for a single sample.

8.
Phys Chem Chem Phys ; 14(7): 2362-74, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22241160

RESUMO

Helical porphyrin nanotubes of tetrakis(4-sulfonatophenyl)porphyrin (TSPP) were examined in DCl/D(2)O solution using resonance Raman and resonance light scattering spectroscopy to probe the influence of hydrogen bonding on the excitonic states. Atomic force microscopy reveals similar morphology for aggregates deposited from DCl/D(2)O and from HCl/H(2)O solution. Deuteration results in subtle changes to the aggregate absorption spectrum but large changes in the relative intensities of Raman modes in the J-band excited resonance Raman spectra, revealing relatively more reorganization along lower-frequency vibrational modes in the protiated aggregate. Depolarization ratio dispersion and changes in the relative Raman intensities for excitation wavelengths spanning the J-band demonstrate interference from overlapping excitonic transitions. Distinctly different Raman excitation profiles for the protiated and deuterated aggregates reveal that isotopic substitution influences the excitonic structure of the J-band. The deuterated aggregate exhibits a nearly two-fold increase in intensity of resonance light scattering as a result of an increase in the coherence number, attributed to decreased exciton-phonon scattering. We propose that strongly coupled cyclic N-mers, roughly independent of isotopic substitution, largely decide the optical absorption spectrum, while water-mediated hydrogen bonding influences the further coherent coupling among them when they are assembled into nanotubes. The results show that, similar to natural light-harvesting complexes such as chlorosomes, hydrogen bonding can have a critical influence on exciton dynamics.


Assuntos
Porfirinas/química , Óxido de Deutério/química , Ácido Clorídrico/química , Ligação de Hidrogênio , Luz , Microscopia de Força Atômica , Nanotubos/química , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...