Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomic Med ; 7(9): e929, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31402633

RESUMO

BACKGROUND: Ameloblastin (AMBN) is a secreted matrix protein that is critical for the formation of dental enamel and is enamel-specific with respect to its essential functions. Biallelic AMBN defects cause non-syndromic autosomal recessive amelogenesis imperfecta. Homozygous Ambn mutant mice expressing an internally truncated AMBN protein deposit only a soft mineral crust on the surface of dentin. METHODS: We characterized a family with hypoplastic amelogenesis imperfecta caused by AMBN compound heterozygous mutations (c.1061T>C; p.Leu354Pro/ c.1340C>T; p.Pro447Leu). We generated and characterized Ambn knockout/NLS-lacZ (AmbnlacZ/lacZ ) knockin mice. RESULTS: No AMBN protein was detected using immunohistochemistry in null mice. ß-galactosidase activity was specific for ameloblasts in incisors and molars, and islands of cells along developing molar roots. AmbnlacZ/lacZ 7-week incisors and unerupted (D14) first molars showed extreme enamel surface roughness. No abnormalities were observed in dentin mineralization or in nondental tissues. Ameloblasts in the AmbnlacZ/lacZ mice were unable to initiate appositional growth and started to degenerate and deposit ectopic mineral. No layer of initial enamel ribbons formed in the AmbnlacZ/lacZ mice, but pockets of amelogenin accumulated on the dentin surface along the ameloblast distal membrane and within the enamel organ epithelia (EOE). NLS-lacZ signal was positive in the epididymis and nasal epithelium, but negative in ovary, oviduct, uterus, prostate, seminal vesicles, testis, submandibular salivary gland, kidney, liver, bladder, and bone, even after 15 hr of incubation with X-gal. CONCLUSIONS: Ameloblastin is critical for the initiation of enamel ribbon formation, and its absence results in pathological mineralization within the enamel organ epithelia.


Assuntos
Ameloblastos , Amelogênese Imperfeita , Proteínas do Esmalte Dentário , Mutação , Ameloblastos/metabolismo , Ameloblastos/patologia , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/metabolismo , Amelogênese Imperfeita/patologia , Animais , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Dentina/metabolismo , Dentina/patologia , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos
2.
Mol Genet Genomic Med ; 4(2): 178-96, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27066511

RESUMO

Matrix metalloproteinase 20 (MMP20) and kallikrein-related peptidase 4 (KLK4) are secreted proteinases that are essential for proper dental enamel formation. We characterized and compared enamel formed in wild-type, Mmp20 (-/-), Klk4 (-/-), Mmp20 (+/-) Klk4 (+/-), and Mmp20 (-/-) Klk4 (-/-) mice using dissecting and light microscopy, backscattered scanning electron microscopy (bSEM), SEM, microcomputed tomography (µCT), and energy-dispersive X-ray analysis (EDX). Following eruption, fractures were observed on Mmp20 (-/-), Klk4 (-/-), Mmp20 (+/-) Klk4 (+/-), and Mmp20 (-/-) Klk4 (-/-) molars. Failure of the enamel in the Mmp20 (+/-) Klk4 (+/-) molars was unexpected and suggested that digenic effects could contribute to the etiology of amelogenesis imperfecta in humans. Micro-CT analyses of hemimandibles demonstrated significantly reduced high-density enamel volume in the Mmp20 (-/-) and Klk4 (-/-) mice relative to the wild-type, which was further reduced in Mmp20 (-/-) Klk4 (-/-) mice. bSEM images of 7-week Mmp20 (-/-) and Mmp20 (-/-) Klk4 (-/-) mandibular incisors showed rough, pitted enamel surfaces with numerous indentations and protruding nodules. The Mmp20 (+/-) and Mmp20 (+/-) Klk4 (+/-) incisors showed prominent, evenly spaced, horizontal ridges that were more distinct in Mmp20 (+/-) Klk4 (+/-) incisors relative to Mmp20 (+/-) incisors due to the darkening of the valleys between the ridges. In cross sections, the Mmp20 (-/-) and Mmp20 (-/-) Klk4 (-/-) exhibited three distinct layers. The outer layer exhibited a disturbed elemental composition and an irregular enamel surface covered with nodules. The Mmp20 null enamel was apparently unable to withstand the sheer forces associated with eruption and separated from dentin during development. Cells invaded the cracks and interposed between the dentin and enamel layers. MMP20 and KLK4 serve overlapping and complementary functions to harden enamel by removing protein, but MMP20 potentially serves multiple additional functions necessary for the adherence of enamel to dentin, the release of intercellular protein stores into the enamel matrix, the retreat of ameloblasts to facilitate thickening of the enamel layer, and the timely transition of ameloblasts to maturation.

3.
Mol Genet Genomic Med ; 4(1): 46-67, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26788537

RESUMO

Truncation mutations in FAM83H (family with sequence similarity 83, member H) cause autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI), but little is known about FAM83H function and the pathogenesis of ADHCAI. We recruited three ADHCAI families and identified two novel (p.Gln457*; p.Lys639*) and one previously documented (p.Q452*) disease-causing FAM83H mutations. We generated and characterized Fam83h-knockout/lacZ-knockin mice. Surprisingly, enamel thickness, density, Knoop hardness, morphology, and prism patterns were similar in Fam83h (+/+), Fam83h (+/-), and Fam83h (-/-) mice. The histology of ameloblasts in all stages of development, in both molars and incisors, was virtually identical in all three genotypes and showed no signs of pathology, although the Fam83h (-/-) mice usually died after 2 weeks and rarely survived to 7 weeks. LacZ expression in the knockin mice was used to report Fam83h expression in the epithelial tissues of many organs, notably in skin and hair follicles, which manifested a disease phenotype. Pull-down studies determined that FAM83H dimerizes through its N-terminal phospholipase D-like (PLD-like) domain and identified potential FAM83H interacting proteins. Casein kinase 1 (CK1) interacts with the FAM83H PLD-like domain via an F(270)-X-X-X-F(274)-X-X-X-F(278) motif. CK1 can phosphorylate FAM83H in vitro, and many phosphorylation sites were identified in the FAM83H C-terminus. Truncation of FAM83H alters its subcellular localization and that of CK1. Our results support the conclusion that FAM83H is not necessary for proper dental enamel formation in mice, but may act as a scaffold protein that localizes CK1. ADHCAI is likely caused by gain-of-function effects mediated by truncated FAM83H, which potentially mislocalizes CK1 as part of its pathological mechanism.

4.
Matrix Biol ; 52-54: 219-233, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26620968

RESUMO

Amelotin (AMTN) and kallikrein-4 (KLK4) are secreted proteins specialized for enamel biomineralization. We characterized enamel from wild-type, Amtn(-/-), Klk4(-/-), Amtn(+/-)Klk4(+/-) and Amtn(-/-)Klk4(-/-) mice to gain insights into AMTN and KLK4 functions during amelogenesis. All of the null mice were healthy and fertile. The mandibular incisors in Amtn(-/-), Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice were chalky-white and chipped. No abnormalities except in enamel were observed, and no significant differences were detected in enamel thickness or volume, or in rod decussation. Micro-computed tomography (µCT) maximum intensity projections localized the onset of enamel maturation in wild-type incisors distal to the first molar, but mesial to this position in Amtn(-/-), Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice, demonstrating a delay in enamel maturation in Amtn(-/-) incisors. Micro-CT detected significantly reduced enamel mineral density (2.5 and 2.4gHA/cm(3)) in the Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice respectively, compared with wild-type enamel (3.1gHA/cm(3)). Backscatter scanning electron microscopy showed that mineral density progressively diminished with enamel depth in the Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice. The Knoop hardness of the Amtn(-/-) outer enamel was significantly reduced relative to the wild-type and was not as hard as the middle or inner enamel. Klk4(-/-) enamel hardness was significantly reduced at all levels, but the outer enamel was significantly harder than the inner and middle enamel. Thus the hardness patterns of the Amtn(-/-) and Klk4(-/-) mice were distinctly different, while the Amtn(-/-)Klk4(-/-) outer enamel was not as hard as in the Amtn(-/-) and Klk4(-/-) mice. We conclude that AMTN and KLK4 function independently, but are both necessary for proper enamel maturation.


Assuntos
Amelogênese , Proteínas do Esmalte Dentário/genética , Esmalte Dentário/anormalidades , Calicreínas/genética , Animais , Esmalte Dentário/diagnóstico por imagem , Incisivo , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Varredura , Dente Molar , Calcificação de Dente , Microtomografia por Raio-X
5.
Mol Genet Genomic Med ; 3(4): 302-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26247047

RESUMO

Defects in WDR72 (WD repeat-containing protein 72) cause autosomal recessive hypomaturation amelogenesis imperfecta. We generated and characterized Wdr72-knockout/lacZ-knockin mice to investigate the role of WDR72 in enamel formation. In all analyses, enamel formed by Wdr72 heterozygous mice was indistinguishable from wild-type enamel. Without WDR72, enamel mineral density increased early during the maturation stage but soon arrested. The null enamel layer was only a tenth as hard as wild-type enamel and underwent rapid attrition following eruption. Despite the failure to further mineralize enamel deposited during the secretory stage, ectopic mineral formed on the enamel surface and penetrated into the overlying soft tissue. While the proteins in the enamel matrix were successfully degraded, the digestion products remained inside the enamel. Interactome analysis of WDR72 protein revealed potential interactions with clathrin-associated proteins and involvement in ameloblastic endocytosis. The maturation stage mandibular incisor enamel did not stain with methyl red, indicating that the enamel did not acidify beneath ruffle-ended ameloblasts. Attachment of maturation ameloblasts to the enamel layer was weakened, and SLC24A4, a critical ameloblast calcium transporter, did not localize appropriately along the ameloblast distal membrane. Fewer blood vessels were observed in the papillary layer supporting ameloblasts. Specific WDR72 expression by maturation stage ameloblasts explained the observation that enamel thickness and rod decussation (established during the secretory stage) are normal in the Wdr72 null mice. We conclude that WDR72 serves critical functions specifically during the maturation stage of amelogenesis and is required for both protein removal and enamel mineralization.

6.
Connect Tissue Res ; 55 Suppl 1: 29-32, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25158176

RESUMO

The purpose of this study was to identify the major molecular components in the secretory and maturation stages of amelogenesis through transcriptome analyses. Ameloblasts (40 sections per age group) were laser micro-dissected from Day 5 (secretory stage) and Days 11-12 (maturation stage) first molars. PolyA+ RNA was isolated from the lysed cells, converted to cDNA, and amplified to generate a cDNA library. DNA sequences were obtained using next generation sequencing and analyzed to identify genes whose expression had increased or decreased at least 1.5-fold in maturation stage relative to secretory stage ameloblasts. Among the 9198 genes that surpassed the quality threshold, 373 showed higher expression in secretory stage, while 614 genes increased in maturation stage ameloblasts. The results were cross-checked against a previously published transcriptome generated from tissues overlying secretory and maturation stage mouse incisor enamel and 34 increasing and 26 decreasing expressers common to the two studies were identified. Expression of F2r, which encodes protease activated receptor 1 (PAR1) that showed 10-fold higher expression during the secretory stage in our transcriptome analysis, was characterized in mouse incisors by immunohistochemistry. PAR1 was detected in secretory, but not maturation stage ameloblasts. We conclude that transcriptome analyses are a good starting point for identifying genes/proteins that are critical for proper dental enamel formation and that PAR1 is specifically expressed by secretory stage ameloblasts.


Assuntos
Ameloblastos/metabolismo , Amelogênese/genética , Proteínas do Esmalte Dentário/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Animais , Órgão do Esmalte/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos
7.
Hum Mol Genet ; 23(8): 2157-63, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24305999

RESUMO

Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.


Assuntos
Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Catarata/congênito , Genes Recessivos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Cadeias beta de Integrinas/genética , Mutação/genética , Anormalidades Dentárias/genética , Anormalidades Dentárias/patologia , Ameloblastos/metabolismo , Ameloblastos/patologia , Amelogênese Imperfeita/metabolismo , Sequência de Aminoácidos , Animais , Catarata/genética , Catarata/metabolismo , Catarata/patologia , Criança , Esmalte Dentário/metabolismo , Esmalte Dentário/patologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Heterozigoto , Homozigoto , Humanos , Técnicas Imunoenzimáticas , Cadeias beta de Integrinas/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Linhagem , Fenótipo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Anormalidades Dentárias/metabolismo
8.
PLoS One ; 7(12): e52052, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251683

RESUMO

Amelogenesis imperfecta (AI) is a group of inherited conditions featuring isolated enamel malformations. About 5% of AI cases show an X-linked pattern of inheritance, which are caused by mutations in AMELX. In humans there are two, non-allelic amelogenin genes: AMELX (Xp22.3) and AMELY (Yp11.2). About 90% of amelogenin expression is from AMELX, which is nested within intron 1 of the gene encoding Rho GTPase activating protein 6 (ARHGAP6). We recruited two AI families and determined that their disease-causing mutations were partial deletions in ARHGAP6 that completely deleted AMELX. Affected males in both families had a distinctive enamel phenotype resembling "snow-capped" teeth. The 96,240 bp deletion in family 1 was confined to intron 1 of ARHGAP6 (g.302534_398773del96240), but removed alternative ARHGAP6 promoters 1c and 1d. Analyses of developing teeth in mice showed that ARHGAP6 is not expressed from these promoters in ameloblasts. The 52,654 bp deletion in family 2 (g.363924_416577del52654insA) removed ARHGAP6 promoter 1d and exon 2, precluding normal expression of ARHGAP6. The male proband of family 2 had slightly thinner enamel with greater surface roughness, but exhibited the same pattern of enamel malformations characteristic of males in family 1, which themselves showed minor variations in their enamel phenotypes. We conclude that the enamel defects in both families were caused by amelogenin insufficiency, that deletion of AMELX results in males with a characteristic snow-capped enamel phenotype, and failed ARHGAP6 expression did not appreciably alter the severity of enamel defects when AMELX was absent.


Assuntos
Amelogênese Imperfeita/genética , Amelogenina/genética , Proteínas Ativadoras de GTPase/genética , Deleção de Sequência , Adolescente , Animais , Criança , Pré-Escolar , Esmalte Dentário/patologia , Proteínas do Esmalte Dentário/genética , Éxons/genética , Predisposição Genética para Doença , Humanos , Íntrons , Masculino , Camundongos , Fenótipo , Regiões Promotoras Genéticas , Dente/patologia
9.
Int J Oral Sci ; 4(3): 129-34, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22996272

RESUMO

Enamel crystals are unique in shape, orientation and organization. They are hundreds of thousands times longer than they are wide, run parallel to each other, are oriented with respect to the ameloblast membrane at the mineralization front and are organized into rod or interrod enamel. The classical theory of amelogenesis postulates that extracellular matrix proteins shape crystallites by specifically inhibiting ion deposition on the crystal sides, orient them by binding multiple crystallites and establish higher levels of crystal organization. Elements of the classical theory are supported in principle by in vitro studies; however, the classical theory does not explain how enamel forms in vivo. In this review, we describe how amelogenesis is highly integrated with ameloblast cell activities and how the shape, orientation and organization of enamel mineral ribbons are established by a mineralization front apparatus along the secretory surface of the ameloblast cell membrane.


Assuntos
Amelogênese/fisiologia , Esmalte Dentário/química , Calcificação de Dente , Ameloblastos/química , Ameloblastos/citologia , Membrana Basal/química , Cristalização , Proteínas do Esmalte Dentário/metabolismo , Humanos
10.
Cells Tissues Organs ; 194(2-4): 211-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21546759

RESUMO

BACKGROUND: The enamel layerof kallikrein 4 (Klk4)-null mice has a normal thickness and a decussating pattern of enamel rods, but it contains residual enamel proteins, is less highly mineralized, and fractures in its deepest part just above the dentino-enamel junction (DEJ). The plane of fracture is puzzling because the deepest enamel is deposited earliest and, through the action of the secretory stage enamel protease (Mmp20), is the most mature part of the enamel layer at the time of the onset of Klk4 expression. OBJECTIVES: To characterize the planes of fracture in Mmp20- and Klk4-null mice and to localize Klk4 expression in developing teeth. METHODS: Klk4- and Mmp20-null mice were sacrificed at 7 weeks and their mandibular incisors were characterized by scanning electron microscopy. Klk4(+/)(lac)(Z) mice were mated with Klk4(+/)(lac)(Z) mice. Offspring were genotyped by polymerase chain reaction. Klk4(+/)(+), Klk4(+/)(lac)(Z), and Klk4(lac)(Z/)(lac)(Z) (null) littermates on postnatal days 5, 8, 11, and 14 were processed for ß-galactosidase histochemistry. RESULTS: The enamel layer fractures at the DEJ in Mmp20-null mice, and fractures occur in enamel above the DEJ in Klk4-null mice. Klk4 is not expressed by secretory-stage ameloblasts, murine odontoblasts beneath the secretory stage, or maturation-stage ameloblasts. Klk4 is specifically expressed by transition and maturation-stage ameloblasts. CONCLUSIONS: The breakage of enamel near the DEJ in Klk4-null mice is not due to a failure of odontoblasts to express Klk4, but it relates to a progressive hypomineralization of enamel with depth.


Assuntos
Esmalte Dentário/patologia , Dentina/metabolismo , Calicreínas/deficiência , Animais , Núcleo Celular/metabolismo , Esmalte Dentário/metabolismo , Esmalte Dentário/ultraestrutura , Imuno-Histoquímica , Incisivo/metabolismo , Incisivo/patologia , Incisivo/ultraestrutura , Calicreínas/metabolismo , Mandíbula/metabolismo , Mandíbula/patologia , Mandíbula/ultraestrutura , Camundongos , Camundongos Knockout , beta-Galactosidase/metabolismo
11.
J Biol Chem ; 286(20): 18149-60, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454549

RESUMO

Enamel formation depends on a triad of tissue-specific matrix proteins (amelogenin, ameloblastin, and enamelin) to help initiate and stabilize progressively elongating, thin mineral ribbons of hydroxyapatite formed during an appositional growth phase. Subsequently, these proteins are eradicated to facilitate lateral expansion of the hydroxyapatite crystallites. The purpose of this study was to investigate changes in enamel mineralization occurring in mice unable to produce kallikrein 4 (Klk4), a proteinase associated with terminal extracellular degradation of matrix proteins during the maturation stage. Mice lacking functional matrix metalloproteinase 20 (Mmp20), a proteinase associated with early cleavage of matrix proteins during the secretory stage, were also analyzed as a frame of reference. The results indicated that mice lacking Klk4 produce enamel that is normal in thickness and overall organization in terms of layers and rod/inter-rod structure, but there is a developmental defect in enamel rods where they first form near the dentinoenamel junction. Mineralization is normal up to early maturation after which the enamel both retains and gains additional proteins and is unable to mature beyond 85% mineral by weight. The outmost enamel is hard, but inner regions are soft and contain much more protein than normal. The rate of mineral acquisition overall is lower by 25%. Mice lacking functional Mmp20 produce enamel that is thin and structurally abnormal. Relatively high amounts of protein remain throughout maturation, but the enamel is able to change from 67 to 75% mineral by weight during maturation. These findings reaffirm the importance of secreted proteinases to enamel mineral acquisition.


Assuntos
Calcificação Fisiológica/fisiologia , Esmalte Dentário/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Calicreínas/metabolismo , Metaloproteinase 20 da Matriz/metabolismo , Animais , Proteínas da Matriz Extracelular/genética , Calicreínas/genética , Metaloproteinase 20 da Matriz/genética , Camundongos , Camundongos Knockout , Doenças Dentárias/genética , Doenças Dentárias/metabolismo
12.
J Bone Miner Res ; 26(1): 220-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20687161

RESUMO

Dentin sialophosphoprotein (Dspp) is critical for proper dentin biomineralization because genetic defects in DSPP cause dentin dysplasia type II and dentinogenesis imperfecta types II and III. Dspp is processed by proteases into smaller subunits; the initial cleavage releases dentin phosphoprotein (Dpp). We incubated fluorescence resonance energy transfer (FRET) peptides containing the amino acid context of the Dpp cleavage site (YEFDGKSMQGDDPN, designated Dspp-FRET) or a mutant version of that context (YEFDGKSIEGDDPN, designated mutDspp-FRET) with BMP-1, MEP1A, MEP1B, MMP-2, MMP-8, MMP-9, MT1-MMP, MT3-MMP, Klk4, MMP-20, plasmin, or porcine Dpp and characterized the peptide cleavage products. Only BMP-1, MEP1A, and MEP1B cleaved Dspp-FRET at the G-D peptide bond that releases Dpp from Dspp in vivo. We isolated Dspp proteoglycan from dentin power and incubated it with the three enzymes that cleaved Dspp-FRET at the G-D bond. In each case, the released Dpp domain was isolated, and its N-terminus was characterized by Edman degradation. BMP-1 and MEP1A both cleaved native Dspp at the correct site to generate Dpp, making both these enzymes prime candidates for the protease that cleaves Dspp in vivo. MEP1B was able to degrade Dpp when the Dpp was at sufficiently high concentration to deplete free calcium ion concentration. Immunohistochemistry of developing porcine molars demonstrated that astacins are expressed by odontoblasts, a result that is consistent with RT-PCR analyses. We conclude that during odontogenesis, astacins in the predentin matrix cleave Dspp before the DDPN sequence at the N-terminus of Dpp to release Dpp from the parent Dspp protein.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Metaloendopeptidases/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Sequência de Aminoácidos , Animais , Dentina/enzimologia , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/isolamento & purificação , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Odontoblastos/citologia , Odontoblastos/enzimologia , Peptídeos/química , Peptídeos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/isolamento & purificação , Transporte Proteico , Proteínas Recombinantes/metabolismo , Sialoglicoproteínas/química , Sialoglicoproteínas/isolamento & purificação , Sus scrofa
13.
Eur J Oral Sci ; 119 Suppl 1: 125-35, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22243238

RESUMO

The purpose of this study was to quantify and compare the amounts of volatiles (mostly protein) and mineral present in developing incisor enamel in normal mice and in those genetically engineered for absence of intact enamelin, ameloblastin, matrix metalloproteinase 20 (MMP20) or kallikrein-related peptidase 4 (KLK4). Data indicated that all mice showed peaks in the gross weight of volatiles and a similar weight of mineral at locations on incisors normally associated with early maturation. Thereafter, the content of volatiles on normal incisors declined rapidly by as much as 62%, but not by 100%, over 2 mm, accompanied by increases of ≈ threefold in mineral weights. Enamelin heterozygous mice (lower incisors) showed a decrease in volatile content across the maturation stage, yet mineral failed to increase significantly. Mmp20 null mice showed no significant loss of volatiles from maturing enamel, yet the amount of mineral increased. Klk4 null mice showed normal mineral acquisition up to early maturation, but the input of new volatiles in mid to late maturation caused the final mineralization to slow below normal levels. These results suggest that it is not only the amount of protein but also the nature or type of protein or fragments present in the local crystallite environment that affects their volumetric expansion as they mature.


Assuntos
Amelogênese/fisiologia , Proteínas do Esmalte Dentário/metabolismo , Esmalte Dentário/química , Calcificação de Dente/fisiologia , Animais , Cristalização , Durapatita/metabolismo , Incisivo , Calicreínas/metabolismo , Metaloproteinase 20 da Matriz/metabolismo , Camundongos , Camundongos Knockout
14.
Eur J Oral Sci ; 119 Suppl 1: 206-16, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22243248

RESUMO

Matrix metalloproteinase 20 (MMP20) and kallikrein-related peptidase 4 (KLK4) are thought to be necessary to clear proteins from the enamel matrix of developing teeth. We characterized Mmp20 and Klk4 null mice to better understand their roles in matrix degradation and removal. Histological examination showed retained organic matrix in Mmp20, Klk4, and Mmp20/Klk4 double-null mouse enamel matrix, but not in the wild-type. X-gal histostaining of Mmp20 null mice heterozygous for the Klk4 knockout/lacZ knockin showed that Klk4 is expressed normally in the Mmp20 null background. This finding was corroborated by zymogram and western blotting, which discovered a 40-kDa protease induced in the maturation stage of Mmp20 null mice. Proteins were extracted from secretory-stage or maturation-stage maxillary first molars from wild-type, Mmp20 null, Klk4 null, and Mmp20/Klk4 double-null mice and were analyzed by SDS-PAGE and western blotting. Only intact amelogenins and ameloblastin were observed in secretory-stage enamel of Mmp20 null mice, whereas the secretory-stage matrix from Klk4 null mice was identical to the matrix from wild-type mice. More residual matrix was observed in the double-null mice compared with either of the single-null mice. These results support the importance of MMP20 during the secretory stage and of KLK4 during the maturation stage and show there is only limited functional redundancy for these enzymes.


Assuntos
Amelogênese/fisiologia , Proteínas do Esmalte Dentário/metabolismo , Esmalte Dentário/enzimologia , Calicreínas/fisiologia , Metaloproteinase 20 da Matriz/fisiologia , Ameloblastos/enzimologia , Amelogênese/genética , Amelogenina/metabolismo , Animais , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/isolamento & purificação , Matriz Extracelular/metabolismo , Técnicas de Inativação de Genes , Genótipo , Calicreínas/biossíntese , Calicreínas/genética , Metaloproteinase 20 da Matriz/biossíntese , Metaloproteinase 20 da Matriz/genética , Metaloproteinase 20 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeo Hidrolases/metabolismo , Proteólise
15.
Eur J Oral Sci ; 119 Suppl 1: 226-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22243250

RESUMO

Kallikrein-related peptidase 4 (KLK4) is critical for proper dental enamel formation. Klk4 null mice, and humans with two defective KLK4 alleles have obvious enamel defects, with no other apparent phenotype. KLK4 mRNA or protein is reported to be present in tissues besides teeth, including prostate, ovary, kidney, liver, and salivary gland. In this study we used the Klk4 knockout/NLS-lacZ knockin mouse to assay Klk4 expression using ß-galactosidase histochemistry. Incubations for 5 h were used to detect KLK4 expression with minimal endogenous background, while overnight incubations susceptible to false positives were used to look for trace KLK4 expression. Developing maxillary molars at postnatal days 5, 6, 7, 8, and 14, developing mandibular incisors at postnatal day 14, and selected non-dental tissues from adult wild-type and Klk4(lacZ/lacZ) mice were examined by X-gal histochemistry. After 5 h of incubation, X-gal staining was observed specifically in the nuclei of maturation-stage ameloblasts in molars and incisors from Klk4(lacZ/lacZ) mice and was detected weakly in the nuclei of salivary gland ducts and in patches of prostate epithelia. We conclude that KLK4 is predominantly a tooth-specific protease with low expression in submandibular salivary gland and prostate, and with no detectable expression in liver, kidney, testis, ovary, oviduct, epididymis, and vas deferens.


Assuntos
Ameloblastos/enzimologia , Esmalte Dentário/enzimologia , Calicreínas/biossíntese , Próstata/enzimologia , Glândula Submandibular/enzimologia , Amelogênese , Animais , Feminino , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Calicreínas/análise , Calicreínas/genética , Masculino , Camundongos , Camundongos Knockout , Especificidade de Órgãos , beta-Galactosidase/genética
16.
Eur J Oral Sci ; 119 Suppl 1: 329-37, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22243264

RESUMO

Enamelin is a secreted glycoprotein that is critical for dental enamel formation. Ameloblasts in enamelin (Enam) null mice develop atypical features that include the absence of a Tomes' process, expanded endoplasmic reticulum, apparent loss of polarity, and pooling of extracellular matrix in all directions, including between ameloblasts and the stratum intermedium. We hypothesized that ameloblast pathological changes may be associated with increased cell apoptosis. Our objective was to assess apoptotic activity in maxillary first molars of wild-type, Enam(+/-), and Enam(-/-) mice at postnatal days 5, 7, 9, 14, and 17. Mouse maxillae were characterized by light microscopy after terminal deoxynucleotidyl transferase (TdT)-mediated biotin-dUTP nick-end labelling (TUNEL) or 5-bromo-2'-deoxyuridine (BrdU) staining. Following the initial deposition of dentin matrix, ameloblasts became highly dysplastic and no enamel crystal ribbons were deposited. Ameloblast apoptosis was observed in the Enam null mice starting in the secretory stage and with no apparent alteration in cell proliferation. We conclude that in the absence of enamelin and subsequent shutdown of enamel formation, ameloblasts undergo pathological changes early in the secretory stage that are evident as radically altered cell morphology, detachment from the tooth surface, apoptosis, and formation of ectopic calcifications both outside and inside the dystrophic enamel organ.


Assuntos
Ameloblastos/patologia , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Proteínas do Esmalte Dentário/genética , Animais , Apoptose , Bromodesoxiuridina/metabolismo , Calcinose , Proliferação de Células , Cristalização , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Dente Molar/patologia , Calcificação de Dente/genética , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...