Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 134(2): 277-287, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548512

RESUMO

This study sought to determine if high sodium (HS) intake in salt resistant (SR) individuals attenuates upper limb arterial dilation in response to reactive (occlusion) and active (exercise) hyperemia, two stimuli with varying vasodilatory mechanisms, and the role of oxidative stress in this response. Ten young, SR participants (9 males, 1 female) consumed a 7-day HS (6,900 mg/day) and a 7-day recommended sodium intake (RI: 2,300 mg/day) diet in a randomized order. On the last day of each diet, brachial artery (BA) function was evaluated via reactive (RH-FMD: 5 min of cuff occlusion) and active [handgrip (HG) exercise] hyperemia after consumption of both placebo (PL) and antioxidants (AO). The HS diet significantly elevated sodium excretion (P < 0.05), but mean arterial blood pressure was unchanged. During the PL condition, the HS diet significantly reduced RH-FMD when compared with RI diet (P = 0.01), but this reduction was significantly restored (P = 0.01) when supplemented with AO (HS + PL: 5.9 ± 3.4; HS + AO: 8.2 ± 2.7; RI + PL: 8.9 ± 4.7; RI + AO: 7.0 ± 2.1%). BA shear-to-dilation slopes, evaluated across all HG exercise workloads, were not significantly different across sodium intervention or AO supplementation. In SR individuals, HS intake impaired BA function when assessed via RH-FMD, but was restored with acute AO consumption suggesting oxidative stress as a contributor to this dysfunction. However, exercise-induced BA dilation was unaltered, potentially implicating an inability of HS intake to influence the mechanisms responsible for effectively maintaining skeletal muscle perfusion during exercise.NEW & NOTEWORTHY This study examined if high sodium (HS) intake in salt resistant (SR) individuals attenuates brachial artery (BA) flow-mediated dilation in response to reactive (occlusion) and active (exercise) hyperemia. In SR individuals, HS intake impaired reactive hyperemia-induced BA dilation, but not exercise-induced BA dilation. This finding suggests that although brachial artery nitric oxide bioavailability may be reduced following HS intake, the redundant mechanisms associated with adequate upper limb blood flow regulation during exercise are maintained.


Assuntos
Hiperemia , Sódio na Dieta , Feminino , Humanos , Masculino , Velocidade do Fluxo Sanguíneo/fisiologia , Artéria Braquial/fisiologia , Dilatação , Endotélio Vascular/fisiologia , Força da Mão/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Sódio , Extremidade Superior , Vasodilatação/fisiologia
2.
Microvasc Res ; 135: 104147, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33610562

RESUMO

PURPOSE: Lower limb microvascular dysfunction resulting from prolonged sitting (PS) bouts has been revealed to occur independent of sex. Although acute antioxidant supplementation has been reported to blunt conduit artery dysfunction following PS in young males, it is unknown if this protective effect extends to the microvasculature or is relevant in young females, who possess intrinsic vascular protective mechanisms specific to antioxidant defense. Therefore, this study employed an acute antioxidant supplementation to further examine sex differences during PS with a specific focus on microvascular function. METHODS: On two separate visits, 14 females (23 ± 3 years) and 12 males (25 ± 4 years) had leg microvascular function (LMVF) assessed (via the passive leg movement technique) before and after 1.5 h of sitting. Prior to each visit, one gram of vitamin C (VC) or placebo (PL) was consumed. RESULTS: PS significantly reduced LMVF [PL: (M: -34 ± 20; F: -23 ± 18%; p < 0.01) independent of sex (p = 0.7)], but the VC condition only blunted this reduction in males (VC: -3 ± 20%; p < 0.01), but not females (VC: -18 ± 25%; p = 0.5). CONCLUSION: Young males and females reported similar reductions LMVF following PS, but only the young males reported a preservation of LMVF following the VC supplementation. This finding in young females was highlighted by substantial variability in LMVF measures in response to the VC condition that was unrelated to changes in the potential contributors to sitting-induced reductions in LMVF (e.g. lower limb venous pooling, reduced arterial shear rate). NEW AND NOTEWORTHY: In this study, we employed an acute Vitamin C (VC) supplementation to examine sex differences in leg microvascular function (LMVF) following a bout of prolonged sitting. This study revealed that prolonged sitting reduced LMVF independent of sex, but only young males reported an attenuation to this lowered LMVF following VC supplementation. The young females revealed substantial variability in sitting-induced changes to LMVF that could not be explained by the potential contributors to sitting-induced reductions in LMVF (e.g. lower limb venous pooling, reduced arterial shear rate).


Assuntos
Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Extremidade Inferior/irrigação sanguínea , Microcirculação/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Postura Sentada , Adulto , Feminino , Humanos , Masculino , Microvasos/fisiopatologia , Distribuição Aleatória , Fatores Sexuais , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...