RESUMO
Urbanization often substantially influences animal movement and gene flow. However, few studies to date have examined gene flow of the same species across multiple cities. In this study, we examine brown rats (Rattus norvegicus) to test hypotheses about the repeatability of neutral evolution across four cities: Salvador, Brazil; New Orleans, USA; Vancouver, Canada; and New York City, USA. At least 150 rats were sampled from each city and genotyped for a minimum of 15 000 genome-wide single nucleotide polymorphisms. Levels of genome-wide diversity were similar across cities, but varied across neighbourhoods within cities. All four populations exhibited high spatial autocorrelation at the shortest distance classes (less than 500 m) owing to limited dispersal. Coancestry and evolutionary clustering analyses identified genetic discontinuities within each city that coincided with a resource desert in New York City, major waterways in New Orleans, and roads in Salvador and Vancouver. Such replicated studies are crucial to assessing the generality of predictions from urban evolution, and have practical applications for pest management and public health. Future studies should include a range of global cities in different biomes, incorporate multiple species, and examine the impact of specific characteristics of the built environment and human socioeconomics on gene flow.
Assuntos
Fluxo Gênico , Genótipo , Polimorfismo de Nucleotídeo Único , Brasil , Colúmbia Britânica , Cidades , Análise por Conglomerados , Nova Orleans , Cidade de Nova IorqueRESUMO
The Norway rat, Rattus norvegicus, is one of the most important pest species globally and the main reservoir of leptospires causing human leptospirosis in the urban slums of tropical regions. Rodent control is a frequent strategy in those settings to prevent the disease but rapid growth from residual populations and immigration limit the long-term effectiveness of interventions. To characterize the breeding ecology of R. norvegicus and provide needed information for the level of genetic mixing, which can help identify inter-connected eradication units, we estimated the occurrence of multiple paternity, distances between mothers and sires, and inbreeding in rats from urban slum habitat in Salvador, Brazil. We genotyped 9 pregnant females, their 66 offspring, and 371 males at 16 microsatellite loci. Multiple paternity was observed in 22% (2/9) of the study litters. Of the 12 sires that contributed to the 9 litters, we identified 5 (42%) of those sires among our genotyped males. Related males were captured in close proximity to pregnant females (the mean inter-parent trapping distance per litter was 70 m, ±58 m SD). Levels of relatedness between mother-sire pairs were higher than expected and significantly higher than relatedness between all females and non-sire males. Our findings indicate multiple paternity is common, inbreeding is apparent, and that mother-sire dyads occur in close proximity within the study area. This information is relevant to improve the spatial definition of the eradication units that may enhance the effectiveness of rodent management programs aimed at preventing human leptospirosis. High levels of inbreeding may also be a sign that eradication efforts are successful.