Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 31(10): 1965-76, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22893379

RESUMO

The paper presents the automated computation of hepatic tumor burden from abdominal computed tomography (CT) images of diseased populations with images with inconsistent enhancement. The automated segmentation of livers is addressed first. A novel 3-D affine invariant shape parameterization is employed to compare local shape across organs. By generating a regular sampling of the organ's surface, this parameterization can be effectively used to compare features of a set of closed 3-D surfaces point-to-point, while avoiding common problems with the parameterization of concave surfaces. From an initial segmentation of the livers, the areas of atypical local shape are determined using training sets. A geodesic active contour corrects locally the segmentations of the livers in abnormal images. Graph cuts segment the hepatic tumors using shape and enhancement constraints. Liver segmentation errors are reduced significantly and all tumors are detected. Finally, support vector machines and feature selection are employed to reduce the number of false tumor detections. The tumor detection true position fraction of 100% is achieved at 2.3 false positives/case and the tumor burden is estimated with 0.9% error. Results from the test data demonstrate the method's robustness to analyze livers from difficult clinical cases to allow the temporal monitoring of patients with hepatic cancer.


Assuntos
Neoplasias Hepáticas/diagnóstico por imagem , Fígado/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Bases de Dados Factuais , Humanos , Imageamento Tridimensional/métodos , Neoplasias Hepáticas/patologia , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Sensibilidade e Especificidade , Máquina de Vetores de Suporte , Carga Tumoral
2.
Biomacromolecules ; 11(5): 1160-8, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20345129

RESUMO

The objective of this work was to investigate the effects of macroporous hydrogel architecture on the osteogenic signal expression and differentiation of human mesenchymal stem cells (hMSCs). In particular, we have proposed a tissue engineering approach for orbital bone repair based on a cyclic acetal biomaterial formed from 5-ethyl-5-(hydroxymethyl)-beta,beta-dimethyl-1,3-dioxane-2-ethanol diacrylate (EHD) and poly(ethylene glycol) diacrylate (PEGDA). The EHD monomer and PEGDA polymer may be fabricated into macroporous EH-PEG hydrogels by radical polymerization and subsequent porogen leaching, a novel technique for hydrophilic gels. We hypothesized that EH-PEG hydrogel macroporosity facilitates intercellular signaling among hMSCs. To investigate this phenomenon, hMSCs were loaded into EH-PEG hydrogels with varying pore size and porosity. The viability of hMSCs, the expression of bone morphogenetic protein-2 (BMP-2), BMP receptor type 1A, and BMP receptor type 2 by hMSCs, and the differentiation of hMSCs were then assessed. Results demonstrate that macroporous EH-PEG hydrogels support hMSCs and that this macroporous environment promotes a dramatic increase in BMP-2 expression by hMSCs. This upregulation of BMP-2 expression is associated by a more rapid hMSC differentiation, as measured by alkaline phosphatase expression. Altering hMSC interactions with the EH-PEG hydrogel surface, by the addition of fibronectin, did not appear to augment BMP-2 expression. We therefore speculate that EH-PEG hydrogel macroporosity facilitates autocrine and paracrine signaling by localizing endogenously expressed factors within the hydrogel's pores and thus promotes hMSC osteoblastic differentiation and bone regeneration.


Assuntos
Desenvolvimento Ósseo , Hidrogéis , Regulação para Cima , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...