Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(32): 7256-7263, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37555761

RESUMO

Calculating observable properties of chemical systems is often classically intractable and widely viewed as a promising application of quantum information processing. Here, we introduce a new framework for solving generic quantum chemical dynamics problems using quantum logic. We experimentally demonstrate a proof-of-principle instance of our method using the QSCOUT ion-trap quantum computer, where we experimentally drive the ion-trap system to emulate the quantum wavepacket dynamics corresponding to the shared-proton within an anharmonic hydrogen bonded system. Following the experimental creation and propagation of the shared-proton wavepacket on the ion-trap, we extract measurement observables such as its time-dependent spatial projection and its characteristic vibrational frequencies to spectroscopic accuracy (3.3 cm-1 wavenumbers, corresponding to >99.9% fidelity). Our approach introduces a new paradigm for studying the chemical dynamics and vibrational spectra of molecules and opens the possibility to describe the behavior of complex molecular processes with unprecedented accuracy.

2.
J Chem Theory Comput ; 17(11): 6713-6732, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34694820

RESUMO

The accurate computational determination of chemical, materials, biological, and atmospheric properties has a critical impact on a wide range of health and environmental problems, but is deeply limited by the computational scaling of quantum mechanical methods. The complexity of quantum chemical studies arises from the steep algebraic scaling of electron correlation methods and the exponential scaling in studying nuclear dynamics and molecular flexibility. To date, efforts to apply quantum hardware to such quantum chemistry problems have focused primarily on electron correlation. Here, we provide a framework that allows for the solution of quantum chemical nuclear dynamics by mapping these to quantum spin-lattice simulators. Using the example case of a short-strong hydrogen-bonded system, we construct the Hamiltonian for the nuclear degrees of freedom on a single Born-Oppenheimer surface and show how it can be transformed to a generalized Ising model Hamiltonian. We then demonstrate a method to determine the local fields and spin-spin couplings needed to identically match the molecular and spin-lattice Hamiltonians. We describe a protocol to determine the on-site and intersite coupling parameters of this Ising Hamiltonian from the Born-Oppenheimer potential and nuclear kinetic energy operator. Our approach represents a paradigm shift in the methods used to study quantum nuclear dynamics, opening the possibility to solve both electronic structure and nuclear dynamics problems using quantum computing systems.

3.
Phys Rev Lett ; 127(2): 020503, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34296899

RESUMO

We experimentally study two-dimensional (2D) Coulomb crystals in the "radial-2D" phase of a linear Paul trap. This phase is identified by a 2D ion lattice aligned entirely with the radial plane and is created by imposing a large ratio of axial to radial trapping potentials. Using arrays of up to 19 ^{171}Yb^{+} ions, we demonstrate that the structural phase boundaries of such crystals are well described by the pseudopotential approximation, despite the time-dependent ion positions driven by intrinsic micromotion. We further observe that micromotion-induced heating of the radial-2D crystal is confined to the radial plane. Finally, we verify that the transverse motional modes, which are used in most ion-trap quantum simulation schemes, are well-predictable numerically and remain decoupled and cold in this geometry. Our results establish radial-2D ion crystals as a robust experimental platform for realizing a variety of theoretical proposals in quantum simulation and computation.

4.
Phys Rev Lett ; 126(20): 206602, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110211

RESUMO

We introduce the concept of a Floquet gauge pump whereby a dynamically engineered Floquet Hamiltonian is employed to reveal the inherent degeneracy of the ground state in interacting systems. We demonstrate this concept in a one-dimensional XY model with periodically driven couplings and transverse field. In the high-frequency limit, we obtain the Floquet Hamiltonian consisting of the static XY and dynamically generated Dzyaloshinsky-Moriya interaction (DMI) terms. The dynamically generated magnetization current depends on the phases of complex coupling terms, with the XY interaction as the real and DMI as the imaginary part. As these phases are cycled, the current reveals the ground-state degeneracies that distinguish the ordered and disordered phases. We discuss experimental requirements needed to realize the Floquet gauge pump in a synthetic quantum spin system of interacting trapped ions.

5.
Nature ; 511(7508): 198-201, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25008525

RESUMO

The maximum speed with which information can propagate in a quantum many-body system directly affects how quickly disparate parts of the system can become correlated and how difficult the system will be to describe numerically. For systems with only short-range interactions, Lieb and Robinson derived a constant-velocity bound that limits correlations to within a linear effective 'light cone'. However, little is known about the propagation speed in systems with long-range interactions, because analytic solutions rarely exist and because the best long-range bound is too loose to accurately describe the relevant dynamical timescales for any known spin model. Here we apply a variable-range Ising spin chain Hamiltonian and a variable-range XY spin chain Hamiltonian to a far-from-equilibrium quantum many-body system and observe its time evolution. For several different interaction ranges, we determine the spatial and time-dependent correlations, extract the shape of the light cone and measure the velocity with which correlations propagate through the system. This work opens the possibility for studying a wide range of many-body dynamics in quantum systems that are otherwise intractable.

6.
Opt Lett ; 32(5): 572-4, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17392925

RESUMO

Stable, narrow-linewidth optical sources are necessary in modern atomic physics. An appealing approach to achieving approximately 10 kHz frequency stability is optical feedback. We have designed a compact external cavity diode laser with optical feedback to a filter cavity mounted on a single baseplate and enclosed inside a vacuum sealed box. The design was implemented for three wavelengths addressing the 422 nm cooling, 1091 nm repumping, and 674 nm clock transition lines of Sr(+). We are able to cool a single, trapped strontium ion to approximately 2 mK and observe motional sidebands of the 5S(1/2) <--> 4D(5/2) transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...