Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 13012, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747670

RESUMO

The salamander chytrid fungus (Batrachochytrium salamandrivorans [Bsal]) is causing massive mortality of salamanders in Europe. The potential for spread via international trade into North America and the high diversity of salamanders has catalyzed concern about Bsal in the U.S. Surveillance programs for invading pathogens must initially meet challenges that include low rates of occurrence on the landscape, low prevalence at a site, and imperfect detection of the diagnostic tests. We implemented a large-scale survey to determine if Bsal was present in North America designed to target taxa and localities where Bsal was determined highest risk to be present based on species susceptibility and geography. Our analysis included a Bayesian model to estimate the probability of occurrence of Bsal given our prior knowledge of the occurrence and prevalence of the pathogen. We failed to detect Bsal in any of 11,189 samples from 594 sites in 223 counties within 35 U.S. states and one site in Mexico. Our modeling indicates that Bsal is highly unlikely to occur within wild amphibians in the U.S. and suggests that the best proactive response is to continue mitigation efforts against the introduction and establishment of the disease and to develop plans to reduce impacts should Bsal establish.


Assuntos
Anfíbios/microbiologia , Batrachochytrium/isolamento & purificação , Anfíbios/classificação , Animais , Batrachochytrium/genética , Teorema de Bayes , DNA Fúngico/genética , América do Norte , Reação em Cadeia da Polimerase , Especificidade da Espécie
2.
PLoS One ; 15(7): e0235907, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32701990

RESUMO

CONTEXT: A disease can be a source of disturbance, causing population declines or extirpations, altering species interactions, and affecting habitat structure. This is particularly relevant for diseases that affect keystone species or ecosystem engineers, leading to potentially cascading effects on ecosystems. OBJECTIVE: We investigated the invasion of a non-native disease, plague, to a keystone species, prairie dogs, and documented the resulting extent of fragmentation and habitat loss in western grasslands. Specifically, we assessed how the arrival of plague in the Conata Basin, South Dakota, United States, affected the size, shape, and aggregation of prairie dog colonies, an animal species known to be highly susceptible to plague. METHODS: Colonies in the prairie dog complex were mapped every 1 to 3 years from 1993 to 2015. Plague was first confirmed in 2008 and we compared prairie dog complex and colony characteristics before and after the arrival of plague. RESULTS: As expected the colony complex and the patches in colonies became smaller and more fragmented after the arrival of plague; the total area of each colony and the mean area per patch within a colony decreased, the number of patches per colony increased, and mean contiguity of each patch decreased, leading to habitat fragmentation. CONCLUSION: We demonstrate how an emerging infectious disease can act as a source of disturbance to natural systems and lead to potentially permanent alteration of habitat characteristics. While perhaps not traditionally thought of as a source of ecosystem disturbances, in recent years emerging infectious diseases have shown to be able to have large effects on ecosystems if they affect keystone species.


Assuntos
Peste/diagnóstico , Doenças dos Roedores/diagnóstico , Animais , Surtos de Doenças/veterinária , Ecossistema , Peste/epidemiologia , Peste/veterinária , Doenças dos Roedores/epidemiologia , Sciuridae , South Dakota/epidemiologia
4.
Appl Biosaf ; 24(4): 189-199, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36032057

RESUMO

Introduction: Federal Select Agent Program regulations require laboratories to document a validated procedure for inactivating select agents prior to movement outside registered space. Avian influenza viruses and virulent Newcastle disease virus (vNDV) are cultured in chicken amnio-allantoic fluid (AAF), but the efficacy of commercial lysis buffers to inactivate viruses in protein-rich media has not been documented. Objectives: We assesses the efficacy of MagMAX™ lysis buffer for inactivating highly pathogenic avian influenza virus (HPAIV) and vNDV in chicken AAF and confirm the inactivation of avian influenza in serum using heat. Methods: Low pathogenic avian influenza virus (LPAIV) and avian paramyxovirus subtype-1 (APMV-1) were incubated with lysis buffer and tested for viability. Known viable LPAIV and APMV-1 RNA was extracted from AAF using MagMAX™-96 AI/ND Viral RNA Isolation kit, and the eluate was tested for remaining infectious agent. Finally, inactivation of LPAIV in serum was examined over 3 combinations of temperature and incubation time. Results: MagMAX™ lysis buffer inactivated both LPAIV and APMV-1 in AAF when incubated for 30 minutes at room temperature. The full extraction process eliminated viable virus from the final RNA eluate. LPAIV in serum heated to 70°C for 30 minutes was rendered noninfectious. Conclusion: The ability of a diagnostic laboratory to move samples from one space to another is critical to maintaining biosecurity as well as efficient laboratory workflow. Our study demonstrates a method to ensure the inactivation of viable avian influenza and avian paramyxoviruses in AAF, RNA eluate, and viable avian influenza virus in sera.

5.
Ecohealth ; 15(3): 555-565, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29744628

RESUMO

Oral vaccination is an emerging management strategy to reduce the prevalence of high impact infectious diseases within wild animal populations. Plague is a flea-borne zoonosis of rodents that often decimates prairie dog (Cynomys spp.) colonies in the western USA. Recently, an oral sylvatic plague vaccine (SPV) was developed to protect prairie dogs from plague and aid recovery of the endangered black-footed ferret (Mustela nigripes). Although oral vaccination programs are targeted toward specific species, field distribution of vaccine-laden baits can result in vaccine uptake by non-target animals and unintended indirect effects. We assessed the impact of SPV on non-target rodents at paired vaccine and placebo-treated prairie dog colonies in four US states from 2013 to 2015. Bait consumption by non-target rodents was high (70.8%, n = 3113), but anti-plague antibody development on vaccine plots was low (23.7%, n = 266). In addition, no significant differences were noted in combined deer mice (Peromyscus maniculatus) and western harvest mouse (Reithrodontomys megalotis) abundance or community evenness and richness of non-target rodents between vaccine-treated and placebo plots. In our 3-year field study, we could not detect a significant positive or negative effect of SPV application on non-target rodents.


Assuntos
Vacina contra a Peste/administração & dosagem , Peste/imunologia , Peste/prevenção & controle , Doenças dos Roedores/imunologia , Doenças dos Roedores/prevenção & controle , Sciuridae/imunologia , Yersinia pestis/imunologia , Animais , Animais Selvagens/imunologia , Animais Selvagens/microbiologia , Ecossistema , Furões/imunologia , Furões/microbiologia , Peromyscus/imunologia , Peromyscus/microbiologia , Doenças dos Roedores/epidemiologia , Sciuridae/microbiologia , Sifonápteros/imunologia , Sifonápteros/microbiologia , Estados Unidos
6.
J Appl Ecol ; 55: 820-829, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29610540

RESUMO

1. Fungal diseases are an emerging global problem affecting human health, food security and biodiversity. Ability of many fungal pathogens to persist within environmental reservoirs can increase extinction risks for host species and presents challenges for disease control. Understanding factors that regulate pathogen spread and persistence in these reservoirs is critical for effective disease management. 2. White-nose syndrome (WNS) is a disease of hibernating bats caused by Pseudogymnoascus destructans (Pd), a fungus that establishes persistent environmental reservoirs within bat hibernacula, which contribute to seasonal disease transmission dynamics in bats. However, host and environmental factors influencing distribution of Pd within these reservoirs are unknown. 3. We used model selection on longitudinally collected field data to test multiple hypotheses describing presence-absence and abundance of Pd in environmental substrates and on bats within hibernacula at different stages of WNS. 4. First detection of Pd in the environment lagged up to one year after first detection on bats within that hibernaculum. Once detected, the probability of detecting Pd within environmental samples from a hibernaculum increased over time and was higher in sediment compared to wall surfaces. Temperature had marginal effects on the distribution of Pd. For bats, prevalence and abundance of Pd were highest on Myotis lucifugus and on bats with visible signs of WNS. 5. Synthesis and applications. Our results indicate that distribution of Pseudogymnoascus destructans (Pd) within a hibernaculum is driven primarily by bats with delayed establishment of environmental reservoirs. Thus, collection of samples from Myotis lucifugus, or from sediment if bats cannot be sampled, should be prioritized to improve detection probabilities for Pd surveillance. Long-term persistence of Pd in sediment suggests that disease management for white-nose syndrome should address risks of sustained transmission from environmental reservoirs.

7.
Ecohealth ; 15(1): 12-22, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29159477

RESUMO

Sylvatic plague vaccine (SPV) is a virally vectored bait-delivered vaccine expressing Yersinia pestis antigens that can protect prairie dogs (Cynomys spp.) from plague and has potential utility as a management tool. In a large-scale 3-year field trial, SPV-laden baits containing the biomarker rhodamine B (used to determine bait consumption) were distributed annually at a rate of approximately 100-125 baits/hectare along transects at 58 plots encompassing the geographic ranges of four species of prairie dogs. We assessed site- and individual-level factors related to bait uptake in prairie dogs to determine which were associated with bait uptake rates. Overall bait uptake for 7820 prairie dogs sampled was 70% (95% C.I. 69.9-72.0). Factors influencing bait uptake rates by prairie dogs varied by species, however, in general, heavier animals had greater bait uptake rates. Vegetation quality and day of baiting influenced this relationship for black-tailed, Gunnison's, and Utah prairie dogs. For these species, baiting later in the season, when normalized difference vegetation indices (a measure of green vegetation density) are lower, improves bait uptake by smaller animals. Consideration of these factors can aid in the development of species-specific SPV baiting strategies that maximize bait uptake and subsequent immunization of prairie dogs against plague.


Assuntos
Vacina contra a Peste/administração & dosagem , Doenças dos Roedores/prevenção & controle , Sciuridae , Fatores Etários , Animais , Biomarcadores , Rodaminas/administração & dosagem , Fatores Sexuais
8.
Ecohealth ; 14(3): 438-450, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28643091

RESUMO

Sylvatic plague, caused by Yersinia pestis, frequently afflicts prairie dogs (Cynomys spp.), causing population declines and local extirpations. We tested the effectiveness of bait-delivered sylvatic plague vaccine (SPV) in prairie dog colonies on 29 paired placebo and treatment plots (1-59 ha in size; average 16.9 ha) in 7 western states from 2013 to 2015. We compared relative abundance (using catch per unit effort (CPUE) as an index) and apparent survival of prairie dogs on 26 of the 29 paired plots, 12 with confirmed or suspected plague (Y. pestis positive carcasses or fleas). Even though plague mortality occurred in prairie dogs on vaccine plots, SPV treatment had an overall positive effect on CPUE in all three years, regardless of plague status. Odds of capturing a unique animal were 1.10 (95% confidence interval [C.I.] 1.02-1.19) times higher per trap day on vaccine-treated plots than placebo plots in 2013, 1.47 (95% C.I. 1.41-1.52) times higher in 2014 and 1.19 (95% C.I. 1.13-1.25) times higher in 2015. On pairs where plague occurred, odds of apparent survival were 1.76 (95% Bayesian credible interval [B.C.I.] 1.28-2.43) times higher on vaccine plots than placebo plots for adults and 2.41 (95% B.C.I. 1.72-3.38) times higher for juveniles. Our results provide evidence that consumption of vaccine-laden baits can protect prairie dogs against plague; however, further evaluation and refinement are needed to optimize SPV use as a management tool.


Assuntos
Vacina contra a Peste/administração & dosagem , Peste/imunologia , Peste/prevenção & controle , Doenças dos Roedores/imunologia , Doenças dos Roedores/prevenção & controle , Sciuridae/imunologia , Yersinia pestis/imunologia , Amoxicilina , Animais , Arizona , Colorado , Montana , South Dakota , Utah
9.
Emerg Infect Dis ; 23(1): 1-6, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27983501

RESUMO

The rapid emergence and reemergence of zoonotic diseases requires the ability to rapidly evaluate and implement optimal management decisions. Actions to control or mitigate the effects of emerging pathogens are commonly delayed because of uncertainty in the estimates and the predicted outcomes of the control tactics. The development of models that describe the best-known information regarding the disease system at the early stages of disease emergence is an essential step for optimal decision-making. Models can predict the potential effects of the pathogen, provide guidance for assessing the likelihood of success of different proposed management actions, quantify the uncertainty surrounding the choice of the optimal decision, and highlight critical areas for immediate research. We demonstrate how to develop models that can be used as a part of a decision-making framework to determine the likelihood of success of different management actions given current knowledge.


Assuntos
Tomada de Decisão Clínica/métodos , Doenças Transmissíveis Emergentes/epidemiologia , Técnicas de Apoio para a Decisão , Gerenciamento Clínico , Zoonoses/epidemiologia , Animais , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/transmissão , Humanos , Incerteza , Estados Unidos/epidemiologia , Zoonoses/prevenção & controle , Zoonoses/transmissão
10.
Ecohealth ; 13(2): 415-27, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27234457

RESUMO

Sylvatic plague, caused by the bacterium Yersinia pestis, is periodically responsible for large die-offs in rodent populations that can spillover and cause human mortalities. In the western US, prairie dog populations experience nearly 100% mortality during plague outbreaks, suggesting that multiple transmission pathways combine to amplify plague dynamics. Several alternate pathways in addition to flea vectors have been proposed, such as transmission via direct contact with bodily fluids or inhalation of infectious droplets, consumption of carcasses, and environmental sources of plague bacteria, such as contaminated soil. However, evidence supporting the ability of these proposed alternate pathways to trigger large-scale epizootics remains elusive. Here we present a short review of potential plague transmission pathways and use an ordinary differential equation model to assess the contribution of each pathway to resulting plague dynamics in black-tailed prairie dogs (Cynomys ludovicianus) and their fleas (Oropsylla hirsuta). Using our model, we found little evidence to suggest that soil contamination was capable of producing plague epizootics in prairie dogs. However, in the absence of flea transmission, direct transmission, i.e., contact with bodily fluids or inhalation of infectious droplets, could produce enzootic dynamics, and transmission via contact with or consumption of carcasses could produce epizootics. This suggests that these pathways warrant further investigation.


Assuntos
Peste/transmissão , Sciuridae , Yersinia pestis/patogenicidade , Animais , Doenças dos Roedores , Sifonápteros , Yersinia pestis/isolamento & purificação
11.
R Soc Open Sci ; 3(2): 150616, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26998331

RESUMO

A newly identified fungal pathogen, Batrachochytrium salamandrivorans(Bsal), is responsible for mass mortality events and severe population declines in European salamanders. The eastern USA has the highest diversity of salamanders in the world and the introduction of this pathogen is likely to be devastating. Although data are inevitably limited for new pathogens, disease-risk assessments use best available data to inform management decisions. Using characteristics of Bsalecology, spatial data on imports and pet trade establishments, and salamander species diversity, we identify high-risk areas with both a high likelihood of introduction and severe consequences for local salamanders. We predict that the Pacific coast, southern Appalachian Mountains and mid-Atlantic regions will have the highest relative risk from Bsal. Management of invasive pathogens becomes difficult once they are established in wildlife populations; therefore, import restrictions to limit pathogen introduction and early detection through surveillance of high-risk areas are priorities for preventing the next crisis for North American salamanders.

12.
Nature ; 494(7436): 230-3, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23407539

RESUMO

Accelerating rates of species extinctions and disease emergence underscore the importance of understanding how changes in biodiversity affect disease outcomes. Over the past decade, a growing number of studies have reported negative correlations between host biodiversity and disease risk, prompting suggestions that biodiversity conservation could promote human and wildlife health. Yet the generality of the diversity-disease linkage remains conjectural, in part because empirical evidence of a relationship between host competence (the ability to maintain and transmit infections) and the order in which communities assemble has proven elusive. Here we integrate high-resolution field data with multi-scale experiments to show that host diversity inhibits transmission of the virulent pathogen Ribeiroia ondatrae and reduces amphibian disease as a result of consistent linkages among species richness, host composition and community competence. Surveys of 345 wetlands indicated that community composition changed nonrandomly with species richness, such that highly competent hosts dominated in species-poor assemblages whereas more resistant species became progressively more common in diverse assemblages. As a result, amphibian species richness strongly moderated pathogen transmission and disease pathology among 24,215 examined hosts, with a 78.4% decline in realized transmission in richer assemblages. Laboratory and mesocosm manipulations revealed an approximately 50% decrease in pathogen transmission and host pathology across a realistic diversity gradient while controlling for host density, helping to establish mechanisms underlying the diversity-disease relationship and their consequences for host fitness. By revealing a consistent link between species richness and community competence, these findings highlight the influence of biodiversity on infection risk and emphasize the benefit of a community-based approach to understanding infectious diseases.


Assuntos
Anfíbios/parasitologia , Biodiversidade , Interações Hospedeiro-Parasita , Trematódeos/patogenicidade , Áreas Alagadas , Animais , California , Modelos Biológicos , Infecções por Trematódeos/prevenção & controle , Infecções por Trematódeos/transmissão , Infecções por Trematódeos/veterinária
13.
Ecohealth ; 9(3): 288-92, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22766887

RESUMO

The chytrid fungus Batrachochytrium dendrobatidis, ranaviruses, and trematodes (Ribeiroia ondatrae and echinostomes) are highly virulent pathogens known to infect amphibians, yet the extent to which they co-occur within amphibian communities remains poorly understood. Using field surveillance of 85 wetlands in the East Bay region of California, USA, we found that 68% of wetlands had ≥2 pathogens and 36% had ≥3 pathogens. Wetlands with high pathogen species richness also tended to cluster spatially. Our results underscore the need for greater integration of multiple pathogens and their interactions into amphibian disease research and conservation efforts.


Assuntos
Anfíbios/microbiologia , Anfíbios/parasitologia , Virulência , Animais , California/epidemiologia , Quitridiomicetos/isolamento & purificação , Coinfecção/epidemiologia , Coinfecção/veterinária , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/veterinária , Parasitos/isolamento & purificação , Parasitos/patogenicidade , Ranavirus/isolamento & purificação , Ranavirus/patogenicidade , Áreas Alagadas
14.
Ecology ; 93(1): 56-64, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22486087

RESUMO

With growing interest in the effects of biodiversity on disease, there is a critical need for studies that empirically identify the mechanisms underlying the diversity-disease relationship. Here, we combined wetland surveys of host community structure with mechanistic experiments involving a multi-host parasite to evaluate competing explanations for the dilution effect. Sampling of 320 wetlands in California indicated that snail host communities were strongly nested, with competent hosts for the trematode Ribeiroia ondatrae predominating in low-richness assemblages and unsuitable hosts increasingly present in more diverse communities. Moreover, competent host density was negatively associated with increases in snail species richness. These patterns in host community assembly support a key prerequisite underlying the dilution effect. Results of multigenerational mesocosm experiments designed to mimic field-observed community assemblages allowed us to evaluate the relative importance of host density and diversity in influencing parasite infection success. Increases in snail species richness (from one to four species) had sharply negative effects on the density of infected hosts (-90% reduction). However, this effect was indirect; competition associated with non-host species led to a 95% reduction in host density (susceptible host regulation), owing primarily to a reduction in host reproduction. Among susceptible hosts, there were no differences in infection prevalence as a function of community structure, indicating a lack of support for a direct effect of diversity on infection (encounter reduction). In monospecific conditions, higher initial host densities increased infection among adult hosts; however, compensatory reproduction in the low-density treatments equalized the final number of infected hosts by the next generation, underscoring the relevance of multigenerational studies in understanding the dilution effect. These findings highlight the role of interspecific competition in mediating the relationship between species richness and parasite infection and emphasize the importance of field-informed experimental research in understanding mechanisms underlying the diversity-disease relationship.


Assuntos
Biodiversidade , Caramujos/parasitologia , Trematódeos/fisiologia , Animais , Interações Hospedeiro-Parasita , Densidade Demográfica , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...