Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(7): 2223-2231, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796702

RESUMO

Positron emission tomography (PET) reporter systems are a valuable means of estimating the level of expression of a transgene in vivo. For example, the safety and efficacy of gene therapy approaches for the treatment of neurological and neuropsychiatric disorders could be enhanced via the monitoring of exogenous gene expression levels in the brain. The present study evaluated the ability of a newly developed PET reporter system [18F]fluoroestradiol ([18F]FES) and the estrogen receptor-based PET reporter ChRERα, to monitor expression levels of a small hairpin RNA (shRNA) designed to suppress choline acetyltransferase (ChAT) expression in rhesus monkey brain. The ChRERα gene and shRNA were expressed from the same transcript via lentivirus injected into monkey striatum. In two monkeys that received injections of viral vector, [18F]FES binding increased by 70% and 86% at the target sites compared with pre-injection, demonstrating that ChRERα expression could be visualized in vivo with PET imaging. Post-mortem immunohistochemistry confirmed that ChAT expression was significantly suppressed in regions in which [18F]FES uptake was increased. The consistency between PET imaging and immunohistochemical results suggests that [18F]FES and ChRERα can serve as a PET reporter system in rhesus monkey brain for in vivo evaluation of the expression of potential therapeutic agents, such as shRNAs.


Assuntos
Encéfalo , Estradiol , Genes Reporter , Macaca mulatta , Tomografia por Emissão de Pósitrons , Animais , Tomografia por Emissão de Pósitrons/métodos , Estradiol/análogos & derivados , Estradiol/farmacologia , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Expressão Gênica , RNA Interferente Pequeno/genética , Lentivirus/genética , Humanos
3.
Sci Rep ; 14(1): 1886, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253691

RESUMO

Chemogenetic tools are designed to control neuronal signaling. These tools have the potential to contribute to the understanding of neuropsychiatric disorders and to the development of new treatments. One such chemogenetic technology comprises modified Pharmacologically Selective Actuator Modules (PSAMs) paired with Pharmacologically Selective Effector Molecules (PSEMs). PSAMs are receptors with ligand-binding domains that have been modified to interact only with a specific small-molecule agonist, designated a PSEM. PSAM4 is a triple mutant PSAM derived from the α7 nicotinic receptor (α7L131G,Q139L,Y217F). Although having no constitutive activity as a ligand-gated ion channel, PSAM4 has been coupled to the serotonin 5-HT3 receptor (5-HT3R) and to the glycine receptor (GlyR). Treatment with the partner PSEM to activate PSAM4-5-HT3 or PSAM4-GlyR, causes neuronal activation or silencing, respectively. A suitably designed radioligand may enable selective visualization of the expression and location of PSAMs with positron emission tomography (PET). Here, we evaluated uPSEM792, an ultrapotent PSEM for PSAM4-GlyR, as a possible lead for PET radioligand development. We labeled uPSEM792 with the positron-emitter, carbon-11 (t1/2 = 20.4 min), in high radiochemical yield by treating a protected precursor with [11C]iodomethane followed by base deprotection. PET experiments with [11C]uPSEM792 in rodents and in a monkey transduced with PSAM4-GlyR showed low peak radioactivity uptake in brain. This low uptake was probably due to high polarity of the radioligand, as evidenced by physicochemical measurements, and to the vulnerability of the radioligand to efflux transport at the blood-brain barrier. These findings can inform the design of a more effective PSAM4 based PET radioligand, based on the uPSEM792 chemotype.


Assuntos
Receptores de Glicina , Serotonina , Receptores de Glicina/genética , Tomografia Computadorizada por Raios X , Transporte Biológico , Transdução de Sinais
4.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38076986

RESUMO

To be the most successful, primates must adapt to changing environments and optimize their behavior by making the most beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry underlying these two separate abilities. We designed two behavioral tasks in which macaque monkeys updated the values of certain items, either by directly experiencing changes in stimulus-reward associations, or by inferring the value of unexperienced items based on the task's rules. Chemogenetic silencing of bilateral OFC combined with mathematical model-fitting analysis revealed that monkey OFC is involved in updating item value based on both experience and inference. In vivo imaging of chemogenetic receptors by positron emission tomography allowed us to map projections from the OFC to the rostromedial caudate nucleus (rmCD) and the medial part of the mediodorsal thalamus (MDm). Chemogenetic silencing of the OFC-rmCD pathway impaired experience-based value updating, while silencing the OFC-MDm pathway impaired inference-based value updating. Our results thus demonstrate a dissociable contribution of distinct OFC projections to different behavioral strategies, and provide new insights into the neural basis of value-based adaptive decision-making in primates.

5.
PLoS Comput Biol ; 19(11): e1011618, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983250

RESUMO

Animal models are used to understand principles of human biology. Within cognitive neuroscience, non-human primates are considered the premier model for studying decision-making behaviors in which direct manipulation experiments are still possible. Some prominent studies have brought to light major discrepancies between monkey and human cognition, highlighting problems with unverified extrapolation from monkey to human. Here, we use a parallel model system-artificial neural networks (ANNs)-to investigate a well-established discrepancy identified between monkeys and humans with a working memory task, in which monkeys appear to use a recency-based strategy while humans use a target-selective strategy. We find that ANNs trained on the same task exhibit a progression of behavior from random behavior (untrained) to recency-like behavior (partially trained) and finally to selective behavior (further trained), suggesting monkeys and humans may occupy different points in the same overall learning progression. Surprisingly, what appears to be recency-like behavior in the ANN, is in fact an emergent non-recency-based property of the organization of the neural network's state space during its development through training. We find that explicit encouragement of recency behavior during training has a dual effect, not only causing an accentuated recency-like behavior, but also speeding up the learning process altogether, resulting in an efficient shaping mechanism to achieve the optimal strategy. Our results suggest a new explanation for the discrepency observed between monkeys and humans and reveal that what can appear to be a recency-based strategy in some cases may not be recency at all.


Assuntos
Aprendizagem , Memória de Curto Prazo , Animais , Humanos , Haplorrinos , Cognição , Redes Neurais de Computação
6.
Nat Neurosci ; 26(11): 1970-1980, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37798412

RESUMO

Decisions are made with different degrees of consistency, and this consistency can be linked to the confidence that the best choice has been made. Theoretical work suggests that attractor dynamics in networks can account for choice consistency, but how this is implemented in the brain remains unclear. Here we provide evidence that the energy landscape around attractor basins in population neural activity in the prefrontal cortex reflects choice consistency. We trained two rhesus monkeys to make accept/reject decisions based on pretrained visual cues that signaled reward offers with different magnitudes and delays to reward. Monkeys made consistent decisions for very good and very bad offers, but decisions were less consistent for intermediate offers. Analysis of neural data showed that the attractor basins around patterns of activity reflecting decisions had steeper landscapes for offers that led to consistent decisions. Therefore, we provide neural evidence that energy landscapes predict decision consistency, which reflects decision confidence.


Assuntos
Comportamento de Escolha , Tomada de Decisões , Animais , Córtex Pré-Frontal , Encéfalo , Macaca mulatta , Recompensa
7.
bioRxiv ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37886489

RESUMO

Decisions are made with different degrees of consistency, and this consistency can be linked to the confidence that the best choice has been made. Theoretical work suggests that attractor dynamics in networks can account for choice consistency, but how this is implemented in the brain remains unclear. Here, we provide evidence that the energy landscape around attractor basins in population neural activity in prefrontal cortex reflects choice consistency. We trained two rhesus monkeys to make accept/reject decisions based on pretrained visual cues that signaled reward offers with different magnitudes and delays-to-reward. Monkeys made consistent decisions for very good and very bad offers, but decisions were less consistent for intermediate offers. Analysis of neural data showed that the attractor basins around patterns of activity reflecting decisions had steeper landscapes for offers that led to consistent decisions. Therefore, we provide neural evidence that energy landscapes predict decision consistency, which reflects decision confidence.

8.
Curr Res Neurobiol ; 4: 100091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397810

RESUMO

Genetically encoded synthetic receptors, such as the chemogenetic and optogenetic proteins, are powerful tools for functional brain studies in animals. In the primate brain, with its comparatively large, intricate anatomical structures, it can be challenging to express transgenes, such as the hM4Di chemogenetic receptor, in a defined anatomical structure with high penetrance. Here, we compare parameters for lentivirus vector injections in the rhesus monkey amygdala. We find that four injections of 20 µl, infused at 0.5 µl/min, can achieve neuronal hM4Di expression in 50-100% of neurons within a 60 mm3 volume, without observable damage from overexpression. Increasing the number of hM4Di_CFP lentivirus injections to up to 12 sites per hemisphere, resulted in 30%-40% neuronal coverage of the overall amygdala volume, with coverage reaching 60% in some subnuclei. Manganese Chloride was mixed with lentivirus and used as an MRI marker to verify targeting accuracy and correct unsuccessful injections in these experiments. In a separate monkey we visualized, in vivo, viral expression of the hM4Di receptor protein in the amygdala, using Positron Emission Tomography. Together, these data show efficient and verifiable expression of a chemogenetic receptor in old-world monkey amygdala.

9.
Curr Res Neurobiol ; 4: 100085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397813

RESUMO

Impulsivity, the tendency to react quickly and without consideration of consequences, is correlated with asymmetry in the volume of the caudate nucleus in human patients. In this study, we sought to determine whether the induction of functional asymmetry in the caudate nucleus of monkeys would produce phenomenologically comparable behavior. We found that unilateral suppression of the ventral caudate nucleus increases impulsive behavior in rhesus monkeys. Impulsivity was modeled by the subjects' inability to maintain hold of a touch-sensitive bar until presentation of an imperative signal. Two methods were used to suppress activity in the caudate region. First, muscimol was locally infused. Second, a viral construct expressing the hM4Di DREADD (designer receptor exclusively activated by designer drug) was injected at the same site. Clozapine N-oxide and deschloroclozapine activate the DREADD to suppress neuronal activity. Both methods of suppression, pharmacological and chemogenetic, increased the rate of early bar releases, a behavior we interpret to indicate impulsivity. Thus, we demonstrate a causal relationship between caudate asymmetry and impulsivity.

10.
Cereb Cortex ; 33(6): 3098-3106, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35770336

RESUMO

The primate visual system is often described as a hierarchical feature-conjunction pathway, whereby each level represents an increasingly complex combination of image elements, culminating in the representation of whole coherent images in anterior inferior temporal cortex. Although many models of the ventral visual stream emphasize serial feedforward processing ((Poggio T, Mutch J, Leibo J, Rosasco L, Tacchetti A. The computationalmagic of the ventral stream: sketch of a theory (and why some deep architectures work). TechRep MIT-CSAIL-TR-2012-035. MIT CSAIL, Cambridge, MA. 2012); (Yamins DLK, DiCarlo JJ. Eight open questions in the computational modeling of higher sensory cortex. Curr Opin Neurobiol. 2016:37:114-120.)), anatomical studies show connections that bypass intermediate areas and that feedback to preceding areas ((Distler C, Boussaoud D, Desimone R, Ungerleider LG. Cortical connections of inferior temporal area TEO in macaque monkeys. J Comp Neurol. 1993:334(1):125-150.); (Kravitz DJ, Saleem KS, Baker CI, Mishkin M. A new neural framework for visuospatial processing. Nat Rev Neurosci. 2011:12(4):217-230.)). Prior studies on visual discrimination and object transforms also provide evidence against a strictly feed-forward serial transfer of information between adjacent areas ((Kikuchi R, Iwai E. The locus of the posterior subdivision of the inferotemporal visual learning area in the monkey. Brain Res. 1980:198(2):347-360.); (Weiskrantz L, Saunders RC. Impairments of visual object transforms in monkeys. Brain. 1984:107(4):1033-1072.); (Kar K, DiCarlo JJ. Fast recurrent processing via ventrolateral prefrontal cortex is needed by the primate ventral stream for robust Core visual object recognition. Neuron. 2021:109(1):164-176.e5.)). Thus, we sought to investigate whether behaviorally relevant propagation of visual information is as strictly sequential as sometimes supposed. We compared the accuracy of visual recognition after selective removal of specific subregions of inferior temporal cortex-area TEO, area TE, or both areas combined. Removal of TEO alone had no detectable effect on recognition memory, whereas removal of TE alone produced a large and significant impairment. Combined removal of both areas created no additional deficit relative to removal of TE alone. Thus, area TE is critical for rapid visual object recognition, and detailed image-level visual information can reach area TE via a route other than through TEO.


Assuntos
Córtex Cerebral , Lobo Temporal , Animais , Macaca mulatta , Lobo Temporal/fisiologia , Córtex Cerebral/fisiologia , Lobo Parietal , Percepção Visual , Vias Visuais/fisiologia
11.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38168336

RESUMO

We trained two monkeys implanted with multi-electrode arrays to categorize natural images of cats and dogs, in order to observe changes in neural activity related to category learning. We recorded neural activity from area TE, which is required for normal learning of visual categories based on perceptual similarity. Neural activity during a passive viewing task was compared pre- and post-training. After the category training, the accuracy of abstract category decoding improved. Specifically, the proportion of single units with category selectivity increased, and units sustained their category-specific responses for longer. Visual category learning thus appears to enhance category separability in area TE by driving changes in the stimulus selectivity of individual neurons and by recruiting more units to the active network.

12.
ACS Chem Neurosci ; 13(21): 3118-3125, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36279419

RESUMO

Chemogenetics is a technique for obtaining selective pharmacological control over a cell population by expressing an engineered receptor that is selectively activated by an exogenously administered ligand. A promising approach for neuronal modulation involves the use of "Pharmacologically Selective Actuator Modules" (PSAMs); these chemogenetic receptors are selectively activated by ultrapotent "Pharmacologically Selective Effector Molecules" (uPSEMs). To extend the use of PSAM/PSEMs to studies in nonhuman primates, it is necessary to thoroughly characterize the efficacy and safety of these tools. We describe the time course and brain penetrance in rhesus monkeys of two compounds with promising binding specificity and efficacy profiles in in vitro studies, uPSEM792 and uPSEM817, after systemic administration. Rhesus monkeys received subcutaneous (s.c.) or intravenous (i.v.) administration of uPSEM817 (0.064 mg/kg) or uPSEM792 (0.87 mg/kg), and plasma and cerebrospinal fluid samples were collected over 48 h. Both compounds exhibited good brain penetrance, relatively slow washout, and negligible conversion to potential metabolites─varenicline or hydroxyvarenicline. In addition, we found that neither of these uPSEMs significantly altered the heart rate or sleep. Our results indicate that both compounds are suitable candidates for neuroscience studies using PSAMs in nonhuman primates.


Assuntos
Encéfalo , Neurônios , Animais , Ligantes , Macaca mulatta , Neurônios/fisiologia , Encéfalo/fisiologia , Vareniclina
13.
J Neurosci ; 42(32): 6267-6275, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35794012

RESUMO

The orbitofrontal cortex (OFC) and its major downstream target within the basal ganglia-the rostromedial caudate nucleus (rmCD)-are involved in reward-value processing and goal-directed behavior. However, a causal contribution of the pathway linking these two structures to goal-directed behavior has not been established. Using the chemogenetic technology of designer receptors exclusively activated by designer drugs with a crossed inactivation design, we functionally and reversibly disrupted interactions between the OFC and rmCD in two male macaque monkeys. We injected an adeno-associated virus vector expressing an inhibitory designer receptor, hM4Di, into the OFC and contralateral rmCD, the expression of which was visualized in vivo by positron emission tomography and confirmed by postmortem immunohistochemistry. Functional disconnection of the OFC and rmCD resulted in a significant and reproducible loss of sensitivity to the cued reward value for goal-directed action. This decreased sensitivity was most prominent when monkeys had accumulated a certain amount of reward. These results provide causal evidence that the interaction between the OFC and the rmCD is needed for motivational control of action on the basis of the relative reward value and internal drive. This finding extends the current understanding of the physiological basis of psychiatric disorders in which goal-directed behavior is affected, such as obsessive-compulsive disorder.SIGNIFICANCE STATEMENT In daily life, we routinely adjust the speed and accuracy of our actions on the basis of the value of expected reward. Abnormalities in these kinds of motivational adjustments might be related to behaviors seen in psychiatric disorders such as obsessive-compulsive disorder. In the current study, we show that the connection from the orbitofrontal cortex to the rostromedial caudate nucleus is essential for motivational control of action in monkeys. This finding expands our knowledge about how the primate brain controls motivation and behavior and provides a particular insight into disorders like obsessive-compulsive disorder in which altered connectivity between the orbitofrontal cortex and the striatum has been implicated.


Assuntos
Núcleo Caudado , Motivação , Animais , Núcleo Caudado/fisiologia , Objetivos , Humanos , Masculino , Córtex Pré-Frontal/fisiologia , Recompensa
14.
J Comput Neurosci ; 51(3): 381-387, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-37195295

RESUMO

In the canonical view of visual processing the neural representation of complex objects emerges as visual information is integrated through a set of convergent, hierarchically organized processing stages, ending in the primate inferior temporal lobe. It seems reasonable to infer that visual perceptual categorization requires the integrity of anterior inferior temporal cortex (area TE). Many deep neural networks (DNNs) are structured to simulate the canonical view of hierarchical processing within the visual system. However, there are some discrepancies between DNNs and the primate brain. Here we evaluated the performance of a simulated hierarchical model of vision in discriminating the same categorization problems presented to monkeys with TE removals. The model was able to simulate the performance of monkeys with TE removals in the categorization task but performed poorly when challenged with visually degraded stimuli. We conclude that further development of the model is required to match the level of visual flexibility present in the monkey visual system.


Assuntos
Modelos Neurológicos , Lobo Temporal , Animais , Haplorrinos , Percepção Visual , Redes Neurais de Computação , Estimulação Luminosa
15.
Gene Ther ; 29(1-2): 69-80, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34012109

RESUMO

Using genetic tools to study the functional roles of molecularly specified neuronal populations in the primate brain is challenging, primarily because of specificity and verification of virus-mediated targeting. Here, we report a lentivirus-based system that helps improve specificity and verification by (a) targeting a selected molecular mechanism, (b) in vivo reporting of expression, and (c) allowing the option to independently silence all regional neural activity. Specifically, we modulate cholinergic signaling of striatal interneurons by shRNAmir and pair it with hM4Di_CFP, a chemogenetic receptor that can function as an in vivo and in situ reporter. Quantitative analyses by visual and deep-learning assisted methods show an inverse linear relation between hM4Di_CFP and ChAT protein expression for several shRNAmir constructs. This approach successfully applies shRNAmir to modulating gene expression in the primate brain and shows that hM4Di_CFP can act as a readout for this modulation.


Assuntos
Corpo Estriado , Interneurônios , Animais , Corpo Estriado/metabolismo , Interneurônios/metabolismo , Neurônios , Primatas/genética , Interferência de RNA
16.
Nat Neurosci ; 25(1): 7-8, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34903881
18.
Elife ; 102021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34328413

RESUMO

The term 'temporal discounting' describes both choice preferences and motivation for delayed rewards. Here we show that neuronal activity in the dorsal part of the primate caudate head (dCDh) signals the temporally discounted value needed to compute the motivation for delayed rewards. Macaque monkeys performed an instrumental task, in which visual cues indicated the forthcoming size and delay duration before reward. Single dCDh neurons represented the temporally discounted value without reflecting changes in the animal's physiological state. Bilateral pharmacological or chemogenetic inactivation of dCDh markedly distorted the normal task performance based on the integration of reward size and delay, but did not affect the task performance for different reward sizes without delay. These results suggest that dCDh is involved in encoding the integrated multi-dimensional information critical for motivation.


Assuntos
Comportamento Animal , Desvalorização pelo Atraso , Motivação , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Comportamento de Escolha/fisiologia , Sinais (Psicologia) , Macaca mulatta , Recompensa
19.
Sci Rep ; 11(1): 12087, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103546

RESUMO

The recent increase in reliable, simultaneous high channel count extracellular recordings is exciting for physiologists and theoreticians because it offers the possibility of reconstructing the underlying neuronal circuits. We recently presented a method of inferring this circuit connectivity from neuronal spike trains by applying the generalized linear model to cross-correlograms. Although the algorithm can do a good job of circuit reconstruction, the parameters need to be carefully tuned for each individual dataset. Here we present another method using a Convolutional Neural Network for Estimating synaptic Connectivity from spike trains. After adaptation to huge amounts of simulated data, this method robustly captures the specific feature of monosynaptic impact in a noisy cross-correlogram. There are no user-adjustable parameters. With this new method, we have constructed diagrams of neuronal circuits recorded in several cortical areas of monkeys.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Redes Neurais de Computação , Algoritmos , Animais , Simulação por Computador , Modelos Lineares , Macaca fuscata , Masculino , Modelos Teóricos , Vias Neurais/fisiologia , Neurônios/fisiologia , Neurociências , Processamento de Sinais Assistido por Computador , Sinapses/metabolismo , Lobo Temporal/fisiologia , Córtex Visual/patologia , Córtex Visual/fisiologia
20.
Cereb Cortex ; 31(11): 4891-4900, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33987672

RESUMO

The ability to categorize images is thought to depend on neural processing within the ventral visual stream. Recently, we reported that after removal of architectonic area TE, the terminal region of the ventral stream, monkeys were still able to categorize images as cats or dogs moderately well. Here, we investigate the contribution of TEO, the architectonically defined region located one step earlier than area TE in the ventral stream. Bilateral removal of TEO caused only a mild impairment in categorization. However, combined TE + TEO removal was followed by a severe, long-lasting impairment in categorization. All of the monkeys tested, including those with combined TE + TEO removals, had normal low-level visual functions, such as visual acuity. These results support the conclusion that categorization based on visual similarity is processed in parallel in TE and TEO.


Assuntos
Macaca mulatta , Lobo Temporal , Vias Visuais , Animais , Lobo Temporal/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...