Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1253648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781403

RESUMO

Introduction: Invasion of the central nervous system (CNS) is the most serious consequence of Trypanosoma brucei infection, which causes sleeping sickness. Recent experimental data have revealed some more insights into the disease during the meningoencephalitic stage. However, detailed cellular processes befalling the CNS during the disease are poorly understood. Methods: To further address this issue, we implanted a cranial window on the cortex of B6.129P2(Cg)-Cx3cr1tm1Litt/J mice, infected them with Trypanosoma brucei expressing RFP via intraperitoneal injection, and monitored microglial cells and parasites longitudinally over 30 days using in vivo 2-photon imaging. We correlated the observed changes with histological analyses to evaluate the recruitment of peripheral immune cells. Results and discussion: We uncovered an early involvement of microglia that precedes invasion of the CNS by the parasite. We accomplished a detailed characterization of the progressive sequence of events that correlates with microglial morphological changes and microgliosis. Our findings unveiled a heterogeneous microglial response in places of initial homeostatic disruption near brain barriers and pointed out an exceptional capability of microglia to hamper parasite proliferation inside the brain. We also found early signs of inflammation in the meninges, which synchronize with the microglial response. Moreover, we observed a massive infiltration of peripheral immune cells into the parenchyma as a signature in the final disease stage. Overall, our study provides new insights into the host-pathogen immune interactions in the meningeal and parenchymal compartments of the neocortex.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Camundongos , Animais , Microglia/patologia , Encéfalo , Sistema Nervoso Central/patologia
2.
Glia ; 71(12): 2884-2901, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596829

RESUMO

Microglia, the major immune cells of the brain, are functionally heterogeneous but in vivo functional properties of these cells are rarely studied at single-cell resolution. By using microRNA-9 regulated viral vectors for multicolor labeling and longitudinal in vivo monitoring of individual microglia, we followed their fate in the cortex of healthy adult mice and at the onset of amyloidosis in a mouse model of Alzheimer's disease. In wild-type mice, microglia were rather mobile (16% of the cells migrated at least once in 10-20 days) but had a low turnover as documented by low division and death rates. Half of the migratory events were tightly associated with blood vessels. Surprisingly, basic migration properties of microglia (i.e., fraction of migrating cells, saltatory migration pattern, speed of migration, translocation distance, and strong association with blood vessels) were preserved in amyloid-depositing brains, despite amyloid plaques becoming the major destination of migration. Besides, amyloid deposition significantly increased microglial division and death rates. Moreover, the plaque vicinity became a hotspot of microglial turnover, harboring 33% of all migration, 70% of death and 54% of division events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...