Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 807(Pt 2): 150874, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34627905

RESUMO

Cryoconite is a mixture of mineral and organic material covering glacial ice, playing important roles in biogeochemical cycles and lowering the albedo of a glacier surface. Understanding the differences in structure of cryoconite across the globe can be important in recognizing past and future changes in supraglacial environments and ice-organisms-minerals interactions. Despite the worldwide distribution and over a century of studies, the basic characteristics of cryoconite, including its forms and geochemistry, remain poorly studied. The major purpose of our study is the presentation and description of morphological diversity, chemical and photoautotrophs composition, and organic matter content of cryoconite sampled from 33 polar and mountain glaciers around the globe. Observations revealed that cryoconite is represented by various morphologies including loose and granular forms. Granular cryoconite includes smooth, rounded, or irregularly shaped forms; with some having their surfaces covered by cyanobacteria filaments. The occurrence of granules increased with the organic matter content in cryoconite. Moreover, a major driver of cryoconite colouring was the concentration of organic matter and its interplay with minerals. The structure of cyanobacteria and algae communities in cryoconite differs between glaciers, but representatives of cyanobacteria families Pseudanabaenaceae and Phormidiaceae, and algae families Mesotaeniaceae and Ulotrichaceae were the most common. The most of detected cyanobacterial taxa are known to produce polymeric substances (EPS) that may cement granules. Organic matter content in cryoconite varied between glaciers, ranging from 1% to 38%. The geochemistry of all the investigated samples reflected local sediment sources, except of highly concentrated Pb and Hg in cryoconite collected from European glaciers near industrialized regions, corroborating cryoconite as element-specific collector and potential environmental indicator of anthropogenic activity. Our work supports a notion that cryoconite may be more than just simple sediment and instead exhibits complex structure with relevance for biodiversity and the functioning of glacial ecosystems.


Assuntos
Efeitos Antropogênicos , Camada de Gelo , Ecossistema , Humanos , Minerais
2.
Sci Rep ; 10(1): 7915, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404871

RESUMO

The methods of separation of microalgae has a significant impact in the economic aspects of their cultivation. In this study, pine bark was used as a substrate for immobilization of microalgal biomass cultivated in raw municipal sewage. The experiment was conducted in cylindrical photobioreactors (PBRs) with circulation of wastewater. Biomass was cultivated for 42 days. After that time, abundant growth of the biofilm with microalgae on the surface of pine bark as well as improvement of the quality of treated sewage were observed. The efficiency of removal of nutrients from wastewater was 64-81% for total nitrogen and 97-99% for total phosphorus. Moreover, the concentration of suspended solids in sewage was reduced, which resulted in a decrease in turbidity by more than 90%. Colorimetric analysis and Volatile Matter (VM) content in the substrate showed a decrease in the Higher Heating Value (HHV) and concentration of VM due to the proliferation of biofilm.


Assuntos
Biofilmes , Microbiologia Ambiental , Microalgas , Águas Residuárias/microbiologia , Concentração de Íons de Hidrogênio , Microalgas/crescimento & desenvolvimento , Fósforo , Esgotos/microbiologia , Águas Residuárias/análise
3.
Sci Total Environ ; 724: 138112, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32408434

RESUMO

Despite recent great interest in glacier ecosystems in the continental Antarctic, little is known about their maritime counterparts. Our study presents descriptive data on cryoconite sediments and cryoconite holes on Ecology Glacier (King George Island) to accomplish three main objectives: (a) to identify main eukaryotic (algae, invertebrates) and prokaryotic (cyanobacteria) components of microbial communities; (b) to provide a "baseline" of community composition, organic matter and artificial contamination; and (c) to identify key abiotic factors that might be important in community assembly. Cryoconite holes were sampled along an altitudinal gradient of Ecology Glacier in January, mid Austral Summer 2017. Cryoconite holes located in lower altitude were deeper than those located in the middle and the highest altitude. Seventeen species of algae and cyanobacteria with biomass of 0.79 to 5.37 µg/cm3 have been found in sediments. Dominant species were cyanobacterial Pseudanabaena frigida and Bacillariophyceae Microcostaus sp. Biomass of Bacillariophyceae was significantly higher than that of Chlorophyta and Cyanobacteria. We found three species of rotifers (potentially two new to science) and for the first time a glacier dwelling Acari (suspension feeder, Nanorchestes nivalis). Organic matter content ranged from 5.4% to 7.6%. Investigated artificial radionuclides included 137Cs, 238Pu, 239+240Pu and 241Am. 210Pb seems to be related to organic matter content. Overall, cryoconite holes on Ecology Glacier present unique habitats that serve as biodiversity hotspots of psychrophiles, source of organic matter, matrices for radioactivity tracking and model for observing changes in supraglacial ecosystems in the maritime Antarctic.


Assuntos
Ecossistema , Camada de Gelo , Regiões Antárticas , Cianobactérias , Ecologia
4.
Front Plant Sci ; 7: 894, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446124

RESUMO

The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure.

5.
PLoS One ; 10(9): e0136536, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26376204

RESUMO

Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.


Assuntos
Nitrogênio/análise , Plantas/química , Tundra , Animais , Regiões Árticas , Atmosfera/química , Aves , Fezes/química , Fixação de Nitrogênio , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...