Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 17(38): 25342-53, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26356272

RESUMO

The OH initiated gas-phase chemistry of several amines that are potential candidates for use in post-combustion carbon capture (PCCC) plants have been studied by laser flash photolysis with OH monitored by laser induced fluorescence. The rate coefficients for the reaction of OH with N-methylethanolamine (MMEA) and N,N-dimethylethanolamine (DMEA) have been measured as a function of temperature (∼300-500 K): k(OH+MMEA) = (8.51 ± 0.65) × 10(-11)(T/298)(-(0.79±0.22), k(OH+DMEA) = (6.85 ± 0.25) × 10(-11)(T/298)(-(0.44±0.12). The results for DMEA lie between previous values. This is the first kinetic study of the OH + MMEA reaction. At low pressures in the presence of oxygen, OH is recycled in the DMEA reaction as has been observed for other tertiary amines. Branching ratios for OH abstraction with MEA, DMEA and MMEA are dominated by abstraction from the αCH2 group. Abstraction from N-H is determined to be 0.38 ± 0.06 for MEA and 0.52 ± 0.06 for MMEA at 298 K. The impact of these studies has been assessed by using a modified chemical box model to calculate downwind concentrations of nitramines and nitrosamine formed in the photo-oxidation of MEA. Under clear sky conditions, the simulations suggest that current safe guidelines for nitramines may be significantly exceeded with predicted MEA emission rates.

2.
Phys Chem Chem Phys ; 17(37): 23847-58, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26304766

RESUMO

The reaction of Criegee intermediates (CI) with ozone, O3, has been re-examined with higher levels of theory, following earlier reports that O3 could be a relevant sink of CI. The updated rate coefficients indicate that the reaction is somewhat slower than originally anticipated, and is not expected to play a role in the troposphere. In experimental (laboratory) conditions, the CI + O3 reaction can be important. The reaction of CI with ROOH intermediates is found to proceed through a pre-reactive complex, and the insertion process allows for the formation of oligomers in agreement with recent experimental observations. The CI + ROOH reaction also allows for the formation of ether oxides, which don't react with H2O but can oxidize SO2. Under tropospheric conditions, the ether oxides are expected to re-dissociate to the CI + ROOH complex, and ultimately follow the insertion reaction forming a longer-chain hydroperoxide. The CI + ROOH reaction is not expected to play a significant role in the atmosphere. The reaction of CI with CO molecules was studied at very high levels of theory, but no energetically viable route was found, leading to very low rate coefficients. These results are compared against an extensive literature overview of experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...