Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 93: 103093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281362

RESUMO

The reconstruction of cortical surfaces is a prerequisite for quantitative analyses of the cerebral cortex in magnetic resonance imaging (MRI). Existing segmentation-based methods separate the surface registration from the surface extraction, which is computationally inefficient and prone to distortions. We introduce Vox2Cortex-Flow (V2C-Flow), a deep mesh-deformation technique that learns a deformation field from a brain template to the cortical surfaces of an MRI scan. To this end, we present a geometric neural network that models the deformation-describing ordinary differential equation in a continuous manner. The network architecture comprises convolutional and graph-convolutional layers, which allows it to work with images and meshes at the same time. V2C-Flow is not only very fast, requiring less than two seconds to infer all four cortical surfaces, but also establishes vertex-wise correspondences to the template during reconstruction. In addition, V2C-Flow is the first approach for cortex reconstruction that models white matter and pial surfaces jointly, therefore avoiding intersections between them. Our comprehensive experiments on internal and external test data demonstrate that V2C-Flow results in cortical surfaces that are state-of-the-art in terms of accuracy. Moreover, we show that the established correspondences are more consistent than in FreeSurfer and that they can directly be utilized for cortex parcellation and group analyses of cortical thickness.


Assuntos
Aprendizagem , Substância Branca , Humanos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem
2.
Sci Rep ; 13(1): 18270, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880251

RESUMO

Abdominal organ segmentation from CT and MRI is an essential prerequisite for surgical planning and computer-aided navigation systems. It is challenging due to the high variability in the shape, size, and position of abdominal organs. Three-dimensional numeric representations of abdominal shapes with point-wise correspondence to a template are further important for quantitative and statistical analyses thereof. Recently, template-based surface extraction methods have shown promising advances for direct mesh reconstruction from volumetric scans. However, the generalization of these deep learning-based approaches to different organs and datasets, a crucial property for deployment in clinical environments, has not yet been assessed. We close this gap and employ template-based mesh reconstruction methods for joint liver, kidney, pancreas, and spleen segmentation. Our experiments on manually annotated CT and MRI data reveal limited generalization capabilities of previous methods to organs of different geometry and weak performance on small datasets. We alleviate these issues with a novel deep diffeomorphic mesh-deformation architecture and an improved training scheme. The resulting method, UNetFlow, generalizes well to all four organs and can be easily fine-tuned on new data. Moreover, we propose a simple registration-based post-processing that aligns voxel and mesh outputs to boost segmentation accuracy.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Telas Cirúrgicas , Imageamento Tridimensional/métodos , Abdome/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
3.
BMC Med Imaging ; 22(1): 168, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115938

RESUMO

BACKGROUND: Whole-body imaging has recently been added to large-scale epidemiological studies providing novel opportunities for investigating abdominal organs. However, the segmentation of these organs is required beforehand, which is time consuming, particularly on such a large scale. METHODS: We introduce AbdomentNet, a deep neural network for the automated segmentation of abdominal organs on two-point Dixon MRI scans. A pre-processing pipeline enables to process MRI scans from different imaging studies, namely the German National Cohort, UK Biobank, and Kohorte im Raum Augsburg. We chose a total of 61 MRI scans across the three studies for training an ensemble of segmentation networks, which segment eight abdominal organs. Our network presents a novel combination of octave convolutions and squeeze and excitation layers, as well as training with stochastic weight averaging. RESULTS: Our experiments demonstrate that it is beneficial to combine data from different imaging studies to train deep neural networks in contrast to training separate networks. Combining the water and opposed-phase contrasts of the Dixon sequence as input channels, yields the highest segmentation accuracy, compared to single contrast inputs. The mean Dice similarity coefficient is above 0.9 for larger organs liver, spleen, and kidneys, and 0.71 and 0.74 for gallbladder and pancreas, respectively. CONCLUSIONS: Our fully automated pipeline provides high-quality segmentations of abdominal organs across population studies. In contrast, a network that is only trained on a single dataset does not generalize well to other datasets.


Assuntos
Imageamento por Ressonância Magnética , Redes Neurais de Computação , Abdome/diagnóstico por imagem , Estudos de Coortes , Humanos , Imageamento por Ressonância Magnética/métodos , Água
4.
Artigo em Inglês | MEDLINE | ID: mdl-32031934

RESUMO

Fully Convolutional Neural Networks (F-CNNs) achieve state-of-the-art performance for segmentation tasks in computer vision and medical imaging. Recently, computational blocks termed squeeze and excitation (SE) have been introduced to recalibrate F-CNN feature maps both channel- and spatial-wise, boosting segmentation performance while only minimally increasing the model complexity. So far, the development of SE blocks has focused on 2D architectures. For volumetric medical images, however, 3D F-CNNs are a natural choice. In this article, we extend existing 2D recalibration methods to 3D and propose a generic compress-process-recalibrate pipeline for easy comparison of such blocks. We further introduce Project & Excite (PE) modules, customized for 3D networks. In contrast to existing modules, Project & Excite does not perform global average pooling but compresses feature maps along different spatial dimensions of the tensor separately to retain more spatial information that is subsequently used in the excitation step. We evaluate the modules on two challenging tasks, whole-brain segmentation of MRI scans and whole-body segmentation of CT scans. We demonstrate that PE modules can be easily integrated into 3D F-CNNs, boosting performance up to 0.3 in Dice Score and outperforming 3D extensions of other recalibration blocks, while only marginally increasing the model complexity. Our code is publicly available on https://github.com/ai-med/squeezeandexcitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...