Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 2(46): 8220-8230, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25709814

RESUMO

Stem cell-based therapies have demonstrated improved outcomes in preclinical and clinical trials for treating cardiovascular ischemic diseases. However, the contribution of stem cells to vascular repair is poorly understood. To elucidate these mechanisms, many have attempted to monitor stem cells following their delivery in vivo, but these studies have been limited by the fact that many contrast agents, including nanoparticles, are commonly passed on to non-stem cells in vivo. Specifically, cells of the reticuloendothelial system, such as macrophages, frequently endocytose free contrast agents, resulting in the monitoring of macrophages instead of the stem cell therapy. Here we demonstrate a dual gold nanoparticle system which is capable of monitoring both delivered stem cells and infiltrating macrophages using photoacoustic imaging. In vitro analysis confirmed preferential labeling of the two cell types with their respective nanoparticles and the maintenance of cell function following nanoparticle labeling. In addition, delivery of the system within a rat hind limb ischemia model demonstrated the ability to monitor stem cells and distinguish and quantify macrophage infiltration. These findings were confirmed by histology and mass spectrometry analysis. This work has important implications for cell tracking and monitoring cell-based therapies.

2.
J Appl Physiol (1985) ; 106(1): 221-32, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19008489

RESUMO

The acute respiratory distress syndrome (ARDS) is characterized by fluid accumulation in small pulmonary airways. The reopening of these fluid-filled airways involves the propagation of an air-liquid interface that exerts injurious hydrodynamic stresses on the epithelial cells (EpC) lining the airway walls. Previous experimental studies have demonstrated that these hydrodynamic stresses may cause rupture of the plasma membrane (i.e., cell necrosis) and have postulated that cell morphology plays a role in cell death. However, direct experimental measurement of stress and strain within the cell is intractable, and limited data are available on the mechanical response (i.e., deformation) of the epithelium during airway reopening. The goal of this study is to use image-based finite element models of cell deformation during airway reopening to investigate how cell morphology and mechanics influence the risk of cell injury/necrosis. Confocal microscopy images of EpC in subconfluent and confluent monolayers were used to generate morphologically accurate three-dimensional finite element models. Hydrodynamic stresses on the cells were calculated from boundary element solutions of bubble propagation in a fluid-filled parallel-plate flow channel. Results indicate that for equivalent cell mechanical properties and hydrodynamic load conditions, subconfluent cells develop higher membrane strains than confluent cells. Strain magnitudes were also found to decrease with increasing stiffness of the cell and membrane/cortex region but were most sensitive to changes in the cell's interior stiffness. These models may be useful in identifying pharmacological treatments that mitigate cell injury during airway reopening by altering specific biomechanical properties of the EpC.


Assuntos
Células Epiteliais/patologia , Análise de Elementos Finitos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Microscopia Confocal , Modelos Biológicos , Alvéolos Pulmonares/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Membrana Celular/patologia , Forma Celular , Elasticidade , Humanos , Fluidez de Membrana , Necrose , Alvéolos Pulmonares/lesões , Estresse Mecânico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...