Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 117(5): 903-919, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31421836

RESUMO

The chemokine receptor CCR5 is a drug target to prevent transmission of HIV/AIDS. We studied four analogs of the native chemokine regulated, on activation, normal T-cell-expressed, and secreted (RANTES) (CCL5) that have anti-HIV potencies of around 25 pM, which is more than four orders of magnitude higher than that of RANTES itself. It has been hypothesized that the ultrahigh potency of the analogs is due to their ability to bind populations of receptors not accessible to native chemokines. To test this hypothesis, we developed a homogeneous dual-color fluorescence cross-correlation spectroscopy assay for saturation- and competition-binding experiments. The fluorescence cross-correlation spectroscopy assay has the advantage that it does not rely on competition with radioactively labeled native chemokines used in conventional assays. We prepared site-specifically labeled fluorescent analogs using native chemical ligation of synthetic peptides, followed by bioorthogonal fluorescent labeling. We engineered a mammalian cell expression construct to provide fluorescently labeled CCR5, which was purified using a tandem immunoaffinity and size-exclusion chromatography approach to obtain monomeric fluorescent CCR5 in detergent solution. We found subnanomolar binding affinities for the two analogs 5P12-RANTES and 5P14-RANTES and about 20-fold reduced affinities for PSC-RANTES and 6P4-RANTES. Using homologous and heterologous competition experiments with unlabeled chemokine analogs, we conclude that the analogs all bind at the same binding site, whereas the native chemokines (RANTES and MIP-1α) fail to displace bound fluorescent analogs even at tens of micromolar concentrations. Our results can be rationalized with de novo structural models of the N-terminal tails of the synthetic chemokines that adopt a different binding mode as compared to the parent compound.


Assuntos
Quimiocinas/metabolismo , HIV-1/metabolismo , Receptores CCR5/metabolismo , Ligação Competitiva , Quimiocina CCL5/metabolismo , Células HEK293 , Humanos , Ligantes , Modelos Biológicos , Ligação Proteica
2.
Sci Signal ; 11(552)2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327411

RESUMO

Chemokines and some chemical analogs of chemokines prevent cellular HIV-1 entry when bound to the HIV-1 coreceptors C-C chemokine receptor 5 (CCR5) or C-X-C chemokine receptor 4 (CXCR4), which are G protein-coupled receptors (GPCRs). The ideal HIV-1 entry blocker targeting the coreceptors would display ligand bias and avoid activating G protein-mediated pathways that lead to inflammation. We compared CCR5-dependent activation of second messenger pathways in a single cell line. We studied two endogenous chemokines [RANTES (also known as CCL5) and MIP-1α (also known as CCL3)] and four chemokine analogs of RANTES (5P12-, 5P14-, 6P4-, and PSC-RANTES). We found that CCR5 signaled through both Gi/o and Gq/11 IP1 accumulation and Ca2+ flux arose from Gq/11 activation, rather than from Gßγ subunit release after Gi/o activation as had been previously proposed. The 6P4- and PSC-RANTES analogs were superagonists for Gq/11 activation, whereas the 5P12- and 5P14-RANTES analogs displayed a signaling bias for Gi/o These results demonstrate that RANTES analogs elicit G protein subtype-specific signaling bias and can cause CCR5 to couple preferentially to Gq/11 rather than to Gi/o signaling pathways. We propose that G protein subtype-specific signaling bias may be a general feature of GPCRs that can couple to more than one G protein family.


Assuntos
Quimiocinas/metabolismo , Receptores CCR5/metabolismo , Transdução de Sinais , Cálcio/metabolismo , Quimiocina CCL3/farmacologia , Quimiocina CCL5/farmacologia , AMP Cíclico/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , HIV-1/metabolismo , Humanos , Inflamação , Fosfatos de Inositol/metabolismo , Ligantes , Peptídeos Cíclicos/farmacologia , Transfecção
3.
Peptides ; 68: 219-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25451329

RESUMO

The cholecystokinin receptor type 1 (CCK1R) is a G protein-coupled receptor (GPCR) that is involved in several biological processes including the regulation of the secretion of digestive enzymes. The peptide hormone cholecystokinin (CCK) binds to CCK1R, which is an important pharmacological target for several diseases, including obesity. Interestingly, nutritional dietary peptides also appear to activate CCK1R, and may play a role in CCK1R signaling in the gut. In this study, a novel technique to screen for CCK1R ligands based on affinity-selection is described. Functional expressed CCK1R is reconstituted into membrane nanoparticles called NABBs (nanoscale apo-lipoprotein bound bilayers). NABBs are native-like bilayer membrane systems for incorporation of GPCRs. CCK1R-NABBs were characterized using a fluorescently labeled CCK analog and can be used as a cutting-edge technology to screen for CCK1R ligands using affinity-selection mass spectrometry.


Assuntos
Nanopartículas/química , Receptores da Colecistocinina/química , Animais , Apolipoproteínas/química , Técnicas Biossensoriais , Sinalização do Cálcio , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Transporte Proteico , Ratos , Receptores da Colecistocinina/biossíntese , Receptores da Colecistocinina/genética , Proteínas de Peixe-Zebra/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...