Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0316523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441469

RESUMO

Trichoderma species are known for their mycoparasitic activity against phytopathogenic fungi that cause significant economic losses in agriculture. During mycoparasitism, Trichoderma spp. recognize molecules produced by the host fungus and release secondary metabolites and hydrolytic enzymes to kill and degrade the host's cell wall. Here, we explored the participation of the Trichoderma atroviride RNAi machinery in the interaction with six phytopathogenic fungi of economic importance. We determined that both Argonaute-3 and Dicer-2 play an essential role during mycoparasitism. Using an RNA-Seq approach, we identified that perception, detox, and cell wall degradation depend on the T. atroviride-RNAi when interacting with Alternaria alternata, Rhizoctonia solani AG2, and R. solani AG5. Furthermore, we constructed a gene co-expression network that provides evidence of two gene modules regulated by RNAi, which play crucial roles in essential processes during mycoparasitism. In addition, based on small RNA-seq, we conclude that siRNAs regulate amino acid and carbon metabolism and communication during the Trichoderma-host interaction. Interestingly, our data suggest that siRNAs might regulate allorecognition (het) and transport genes in a cross-species manner. Thus, these results reveal a fine-tuned regulation in T. atroviride dependent on siRNAs that is essential during the biocontrol of phytopathogenic fungi, showing a greater complexity of this process than previously established.IMPORTANCEThere is an increasing need for plant disease control without chemical pesticides to avoid environmental pollution and resistance, and the health risks associated with the application of pesticides are increasing. Employing Trichoderma species in agriculture to control fungal diseases is an alternative plant protection strategy that overcomes these issues without utilizing chemical fungicides. Therefore, understanding the biocontrol mechanisms used by Trichoderma species to antagonize other fungi is critical. Although there has been extensive research about the mechanisms involved in the mycoparasitic capability of Trichoderma species, there are still unsolved questions related to how Trichoderma regulates recognition, attack, and defense mechanisms during interaction with a fungal host. In this work, we report that the Argonaute and Dicer components of the RNAi machinery and the small RNAs they process are essential for gene regulation during mycoparasitism by Trichoderma atroviride.


Assuntos
Hypocreales , Praguicidas , Plantas , Comunicação , Regulação Fúngica da Expressão Gênica
2.
Microb Cell Fact ; 19(1): 69, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188455

RESUMO

BACKGROUND: Trichoderma species are among the most effective cell factories to produce recombinant proteins, whose productivity relies on the molecular toolkit and promoters available for the expression of the target protein. Although inducible promoter systems have been developed for producing recombinant proteins in Trichoderma, constitutive promoters are often a desirable alternative. Constitutive promoters are simple to use, do not require external stimuli or chemical inducers to be activated, and lead to purer enzyme preparations. Moreover, most of the promoters for homologous and heterologous expression reported in Trichoderma have been commonly evaluated by directly assessing production of industrial enzymes, requiring optimization of laborious protocols. RESULTS: Here we report the identification of Pccg6, a novel Trichoderma atroviride constitutive promoter, that has similar transcriptional strength as that of the commonly used pki1 promoter. Pccg6 displayed conserved arrangements of transcription factor binding sites between promoter sequences of Trichoderma ccg6 orthologues genes, potentially involved in their regulatory properties. The predicted ccg6-encoded protein potentially belongs to the SPE1/SPI1 protein family and shares high identity with CCG6 orthologue sequences from other fungal species including Trichoderma reesei, Trichoderma virens, Trichoderma asperellum, and to a lesser extent to that of Neurospora crassa. We also report the use of the Pccg6 promoter to drive the expression of PTXD, a phosphite oxidoreductase of bacterial origin, which allowed T. atroviride to utilize phosphite as a sole source of phosphorus. We propose ptxD as a growth reporter gene that allows real-time comparison of the functionality of different promoters by monitoring growth of Trichoderma transgenic lines and enzymatic activity of PTXD. Finally, we show that constitutive expression of ptxD provided T. atroviride a competitive advantage to outgrow bacterial contaminants when supplied with phosphite as a sole source of phosphorus. CONCLUSIONS: A new constitutive promoter, ccg6, for expression of homologous and heterologous proteins has been identified and tested in T. atroviride to express PTXD, which resulted in an effective and visible phenotype to evaluate transcriptional activity of sequence promoters. Use of PTXD as a growth marker holds great potential for assessing activity of other promoters and for biotechnological applications as a contamination control system.


Assuntos
Genes Fúngicos , Regiões Promotoras Genéticas , Trichoderma/genética , Proteínas de Bactérias/genética , Clonagem Molecular , Oxirredutases/genética , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...