Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Learn Mem ; 205: 107836, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820758

RESUMO

The effects of acute stress on memory encoding are complex, and we do not yet know all of the conditions that can determine whether stress at encoding improves or impairs memory. Recent work has found that changing contexts between encoding and stress can abolish the effects of post-encoding stress on memory, suggesting that context may play an important role in the effects of stress on memory. However, the role of context in the effects of stress on memory encoding is not yet known. We addressed this gap by examining the effects of context on the influence of acute stress on memory encoding. In a 2 × 2 experimental design, participants (N = 103) completed either a stressor (i.e., Socially Evaluated Cold Presser Test) or control task (i.e., warm water control) before completing a memory encoding task, which occurred in either in the same room as or a different room from the stressor or control task. Memory retrieval was tested for each participant within the context that they completed the encoding task. We found that, relative to nonstressed (i.e., control) participants, stressed participants who switched contexts prior to encoding showed better memory for both negative and neutral images. In contrast, when the stressor or control task occurred in the same room as memory encoding, stress had no beneficial effect on memory. These results highlight the importance of the ongoing context as a determinant of the effects of stress on memory encoding and present a challenge to current theoretical accounts of stress and memory.


Assuntos
Rememoração Mental , Estresse Psicológico , Humanos , Memória , Projetos de Pesquisa
2.
J Neurosci ; 40(5): 1042-1052, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31836661

RESUMO

In the mammalian brain, the insula is the primary cortical substrate involved in the perception of taste. Recent imaging studies in rodents have identified a "gustotopic" organization in the insula, whereby distinct insula regions are selectively responsive to one of the five basic tastes. However, numerous studies in monkeys have reported that gustatory cortical neurons are broadly-tuned to multiple tastes, and tastes are not represented in discrete spatial locations. Neuroimaging studies in humans have thus far been unable to discern between these two models, though this may be because of the relatively low spatial resolution used in taste studies to date. In the present study, we examined the spatial representation of taste within the human brain using ultra-high resolution functional magnetic resonance imaging (MRI) at high magnetic field strength (7-tesla). During scanning, male and female participants tasted sweet, salty, sour, and tasteless liquids, delivered via a custom-built MRI-compatible tastant-delivery system. Our univariate analyses revealed that all tastes (vs tasteless) activated primary taste cortex within the bilateral dorsal mid-insula, but no brain region exhibited a consistent preference for any individual taste. However, our multivariate searchlight analyses were able to reliably decode the identity of distinct tastes within those mid-insula regions, as well as brain regions involved in affect and reward, such as the striatum, orbitofrontal cortex, and amygdala. These results suggest that taste quality is not represented topographically, but by a distributed population code, both within primary taste cortex as well as regions involved in processing the hedonic and aversive properties of taste.SIGNIFICANCE STATEMENT The insula is the primary cortical substrate involved in taste perception, yet some question remains as to whether this region represents distinct tastes topographically or via a population code. Using high field (7-tesla), high-resolution functional magnetic resonance imaging in humans, we examined the representation of different tastes delivered during scanning. All tastes activated primary taste cortex within the bilateral mid-insula, but no brain region exhibited any consistent taste preference. However, multivariate analyses reliably decoded taste quality within the bilateral mid-insula as well as the striatum, orbitofrontal cortex, and bilateral amygdala. This suggests that taste quality is represented by a spatial population code within regions involved in sensory and appetitive properties of taste.


Assuntos
Encéfalo/fisiologia , Percepção Gustatória/fisiologia , Paladar/fisiologia , Adulto , Tonsila do Cerebelo/fisiologia , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/fisiologia , Adulto Jovem
3.
Brain ; 142(3): 808-822, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30698656

RESUMO

Conversation is an important and ubiquitous social behaviour. Individuals with autism spectrum disorder (autism) without intellectual disability often have normal structural language abilities but deficits in social aspects of communication like pragmatics, prosody, and eye contact. Previous studies of resting state activity suggest that intrinsic connections among neural circuits involved with social processing are disrupted in autism, but to date no neuroimaging study has examined neural activity during the most commonplace yet challenging social task: spontaneous conversation. Here we used functional MRI to scan autistic males (n = 19) without intellectual disability and age- and IQ-matched typically developing control subjects (n = 20) while they engaged in a total of 193 face-to-face interactions. Participants completed two kinds of tasks: conversation, which had high social demand, and repetition, which had low social demand. Autistic individuals showed abnormally increased task-driven interregional temporal correlation relative to controls, especially among social processing regions and during high social demand. Furthermore, these increased correlations were associated with parent ratings of participants' social impairments. These results were then compared with previously-acquired resting state data (56 autism, 62 control subjects). While some interregional correlation levels varied by task or rest context, others were strikingly similar across both task and rest, namely increased correlation among the thalamus, dorsal and ventral striatum, somatomotor, temporal and prefrontal cortex in the autistic individuals, relative to the control groups. These results suggest a basic distinction. Autistic cortico-cortical interactions vary by context, tending to increase relative to controls during task and decrease during test. In contrast, striato- and thalamocortical relationships with socially engaged brain regions are increased in both task and rest, and may be core to the condition of autism.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Relações Interpessoais , Comportamento Verbal/fisiologia , Adolescente , Adulto , Transtorno Autístico/fisiopatologia , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Comunicação , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Descanso , Comportamento Social , Habilidades Sociais , Adulto Jovem
4.
Neuroimage Clin ; 19: 38-46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30035000

RESUMO

Selective or 'picky' eating habits are common among those with autism spectrum disorder (ASD). These behaviors are often related to aberrant sensory experience in individuals with ASD, including heightened reactivity to food taste and texture. However, very little is known about the neural mechanisms that underlie taste reactivity in ASD. In the present study, food-related neural responses were evaluated in 21 young adult and adolescent males diagnosed with ASD without intellectual disability, and 21 typically-developing (TD) controls. Taste reactivity was assessed using the Adolescent/Adult Sensory Profile, a clinical self-report measure. Functional magnetic resonance imaging was used to evaluate hemodynamic responses to sweet (vs. neutral) tastants and food pictures. Subjects also underwent resting-state functional connectivity scans.The ASD and TD individuals did not differ in their hemodynamic response to gustatory stimuli. However, the ASD subjects, but not the controls, exhibited a positive association between self-reported taste reactivity and the response to sweet tastants within the insular cortex and multiple brain regions associated with gustatory perception and reward. There was a strong interaction between diagnostic group and taste reactivity on tastant response in brain regions associated with ASD pathophysiology, including the bilateral anterior superior temporal sulcus (STS). This interaction of diagnosis and taste reactivity was also observed in the resting state functional connectivity between the anterior STS and dorsal mid-insula (i.e., gustatory cortex).These results suggest that self-reported heightened taste reactivity in ASD is associated with heightened brain responses to food-related stimuli and atypical functional connectivity of primary gustatory cortex, which may predispose these individuals to maladaptive and unhealthy patterns of selective eating behavior. Trial registration: (clinicaltrials.gov identifier) NCT01031407. Registered: December 14, 2009.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Comportamento/fisiologia , Encéfalo/patologia , Paladar/fisiologia , Adolescente , Adulto , Transtorno do Espectro Autista/patologia , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...