Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ACS Meas Sci Au ; 4(3): 277-282, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38910861

RESUMO

Synthetic, ecofriendly fuels and chemicals can be produced through Power-To-X (PtX) processes. To study such catalytic processes operando and spatially resolved, magnetic resonance imaging (MRI) is a versatile tool. A main issue in the application of MRI in reactive studies is a lack of knowledge about how the gathered signals can be interpreted into reaction data like temperature or species concentration. In this work, the interaction of methane and gaseous water is studied regarding their longitudinal relaxation time T 1 and the chemical shift. To this end, defined quantities of methane-water mixtures were sealed in glass tubes and probed at temperatures between 130 and 360 °C and pressures from 6 to 20 bar. From the obtained T 1 relaxation times, the collision cross section of methane with water σ j,CH4-H2O is derived, which can be used to estimate the temperature and molar concentration of methane during the methanation reaction. The obtained T 1 relaxation times can additionally be used to improve the timing of MRI sequences involving water vapor or methane. Further, details about the measurement workflow and tube preparation are shared.

2.
ACS Meas Sci Au ; 2(5): 449-456, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36785657

RESUMO

Catalytic hydrogenation reactions are important in a modern hydrogen-based society. To optimize these gas-phase reactions, a deep understanding of heat, mass, and momentum transfer inside chemical reactors is required. Nuclear magnetic resonance (NMR) measurements can be used to obtain spatially resolved values of temperature, gas composition, and velocity in the usually opaque catalytic macrostructures. For this, the desired values are calculated from measured NMR parameters like signal amplitude, T 1, or T 2. However, information on how to calculate target values from these NMR parameters in gases is scarce, especially for mixtures of gases. To enable detailed NMR studies of hydrogenation reactions, we investigated the T 1 relaxation of methane and hydrogen, which are two gases commonly present in hydrogenation reactions. To achieve industrially relevant conditions, the temperatures are varied from 290 to 600 K and the pressure from 1 bara to 5 bara, using different mixtures of methane and hydrogen. The results show that hydrogen, which is usually considered to be nondetectable in standard MRI sequences, can be measured at high concentrations, starting at a pressure of 3 bara even at temperatures above 400 K. In the investigated parameter range, the absolute T 1 values of hydrogen show only small dependence on temperature, pressure, and composition, while T 1 of methane is highly dependent on all three parameters. At a pressure of 5 bara, the measured values of T 1 for methane agree very well with theoretical predictions, so that they can also be used for temperature calculations. Further, it can be shown that the same measurement technique can be used to accurately calculate gas ratios inside each voxel. In conclusion, this study covers important aspects of spatially resolved operando NMR measurements of gas-phase properties during hydrogenation reactions at industrially relevant conditions to help improve chemical processes in the gas phase.

3.
Rev Sci Instrum ; 92(4): 043711, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243384

RESUMO

Recently, in situ studies using nuclear magnetic resonance (NMR) have shown the possibility to monitor local transport phenomena of gas-phase reactions inside opaque structures. Their application to heterogeneously catalyzed reactions remains challenging due to inherent temperature and pressure constraints. In this work, an NMR-compatible reactor was designed, manufactured, and tested, which can endure high temperatures and increased pressure. In temperature and pressure tests, the reactor withstood pressures up to 28 bars at room temperature and temperatures over 400 °C and exhibited only little magnetic shielding. Its applicability was demonstrated by performing the CO2 methanation reaction, which was measured operando for the first time by using a 3D magnetic resonance spectroscopic imaging sequence. The reactor design is described in detail, allowing its easy adaptation for different chemical reactions and other NMR measurements under challenging conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...