Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
2.
NPJ Parkinsons Dis ; 9(1): 104, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393318

RESUMO

Almost 2 decades after linking LRRK2 to Parkinson's disease, a vibrant research field has developed around the study of this gene and its protein product. Recent studies have begun to elucidate molecular structures of LRRK2 and its complexes, and our understanding of LRRK2 has continued to grow, affirming decisions made years ago to therapeutically target this enzyme for PD. Markers of LRRK2 activity, with potential to monitor disease progression or treatment efficacy, are also under development. Interestingly, there is a growing understanding of the role of LRRK2 outside of the central nervous system in peripheral tissues such as gut and immune cells that may also contribute to LRRK2 mediated pathology. In this perspective, our goal is to take stock of LRRK2 research by discussing the current state of knowledge and critical open questions in the field.

3.
ACS Chem Neurosci ; 14(11): 1971-1980, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37200505

RESUMO

Missense mutations along the leucine-rich repeat kinase 2 (LRRK2) protein are a major contributor to Parkinson's Disease (PD), the second most commonly occurring neurodegenerative disorder worldwide. We recently reported the development of allosteric constrained peptide inhibitors that target and downregulate LRRK2 activity through disruption of LRRK2 dimerization. In this study, we designed doubly constrained peptides with the objective of inhibiting C-terminal of Roc (COR)-COR mediated dimerization at the LRRK2 dimer interface. We show that the doubly constrained peptides are cell-permeant, bind wild-type and pathogenic LRRK2, inhibit LRRK2 dimerization and kinase activity, and inhibit LRRK2-mediated neuronal apoptosis, and in contrast to ATP-competitive LRRK2 kinase inhibitors, they do not induce the mislocalization of LRRK2 to skein-like structures in cells. This work highlights the significance of COR-mediated dimerization in LRRK2 activity while also highlighting the use of doubly constrained peptides to stabilize discrete secondary structural folds within a peptide sequence.


Assuntos
Peptídeos , Proteínas Serina-Treonina Quinases , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Dimerização , Leucina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peptídeos/farmacologia , Peptídeos/metabolismo , Mutação
4.
J Cachexia Sarcopenia Muscle ; 14(3): 1322-1336, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36905126

RESUMO

BACKGROUND: Sarcopenia, the age-associated decline in skeletal muscle mass and strength, has long been considered a disease of muscle only, but accumulating evidence suggests that sarcopenia could originate from the neural components controlling muscles. To identify early molecular changes in nerves that may drive sarcopenia initiation, we performed a longitudinal transcriptomic analysis of the sciatic nerve, which governs lower limb muscles, in aging mice. METHODS: Sciatic nerve and gastrocnemius muscle were obtained from female C57BL/6JN mice aged 5, 18, 21 and 24 months old (n = 6 per age group). Sciatic nerve RNA was extracted and underwent RNA sequencing (RNA-seq). Differentially expressed genes (DEGs) were validated using quantitative reverse transcription PCR (qRT-PCR). Functional enrichment analysis of clusters of genes associated with patterns of gene expression across age groups (adjusted P-value < 0.05, likelihood ratio test [LRT]) was performed. Pathological skeletal muscle aging was confirmed between 21 and 24 months by a combination of molecular and pathological biomarkers. Myofiber denervation was confirmed with qRT-PCR of Chrnd, Chrng, Myog, Runx1 and Gadd45ɑ in gastrocnemius muscle. Changes in muscle mass, cross-sectional myofiber size and percentage of fibres with centralized nuclei were analysed in a separate cohort of mice from the same colony (n = 4-6 per age group). RESULTS: We detected 51 significant DEGs in sciatic nerve of 18-month-old mice compared with 5-month-old mice (absolute value of fold change > 2; false discovery rate [FDR] < 0.05). Up-regulated DEGs included Dbp (log2 fold change [LFC] = 2.63, FDR < 0.001) and Lmod2 (LFC = 7.52, FDR = 0.001). Down-regulated DEGs included Cdh6 (LFC = -21.38, FDR < 0.001) and Gbp1 (LFC = -21.78, FDR < 0.001). We validated RNA-seq findings with qRT-PCR of various up- and down-regulated genes including Dbp and Cdh6. Up-regulated genes (FDR < 0.1) were associated with the AMP-activated protein kinase signalling pathway (FDR = 0.02) and circadian rhythm (FDR = 0.02), whereas down-regulated DEGs were associated with biosynthesis and metabolic pathways (FDR < 0.05). We identified seven significant clusters of genes (FDR < 0.05, LRT) with similar expression patterns across groups. Functional enrichment analysis of these clusters revealed biological processes that may be implicated in age-related changes in skeletal muscles and/or sarcopenia initiation including extracellular matrix organization and an immune response (FDR < 0.05). CONCLUSIONS: Gene expression changes in mouse peripheral nerve were detected prior to disturbances in myofiber innervation and sarcopenia onset. These early molecular changes we report shed a new light on biological processes that may be implicated in sarcopenia initiation and pathogenesis. Future studies are warranted to confirm the disease modifying and/or biomarker potential of the key changes we report here.


Assuntos
Fenômenos Biológicos , Sarcopenia , Feminino , Camundongos , Animais , Sarcopenia/etiologia , Transcriptoma , Estudos Transversais , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo
5.
NPJ Parkinsons Dis ; 8(1): 92, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853899

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a kinase involved in different cellular functions, including autophagy, endolysosomal pathways, and immune function. Mutations in LRRK2 cause autosomal-dominant forms of Parkinson's disease (PD). Heterozygous mutations in GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase (GCase), are the most common genetic risk factors for PD. Moreover, GCase function is altered in idiopathic PD and in other genetic forms of the disease. Recent work suggests that LRRK2 kinase activity can regulate GCase function. However, both a positive and a negative correlation have been described. To gain insights into the impact of LRRK2 on GCase, we performed a comprehensive analysis of GCase levels and activity in complementary LRRK2 models, including (i) LRRK2 G2019S knock in (GSKI) mice, (ii) peripheral blood mononuclear cell (PBMCs), plasma, and fibroblasts from PD patients carrying LRRK2 G2019S mutation, (iii) patient iPSCs-derived neurons; (iv) endogenous and overexpressed cell models. In some of these models we found a positive correlation between the activities of LRRK2 and GCase, which was further confirmed in cell lines with genetic and pharmacological manipulation of LRRK2 kinase activity. GCase protein level is reduced in GSKI brain tissues and in G2019S iPSCs-derived neurons, but increased in fibroblasts and PBMCs from patients, suggesting cell-type-specific effects. Overall, our study indicates that LRRK2 kinase activity affects both the levels and the catalytic activity of GCase in a cell-type-specific manner, with important implications in the context of therapeutic application of LRRK2 inhibitors in GBA1-linked and idiopathic PD.

6.
NPJ Parkinsons Dis ; 8(1): 73, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676398

RESUMO

Despite several advances in the field, pharmacodynamic outcome measures reflective of LRRK2 kinase activity in clinical biofluids remain urgently needed. A variety of targets and approaches have been utilized including assessments of LRRK2 itself (levels, phosphorylation), or its substrates (e.g. Rab10 or other Rab GTPases). We have previously shown that intrinsic kinase activity of LRRK2 isolated from PBMCs of G2019S carriers is elevated, irrespective of disease status. In the present study we find that phosphorylation of Rab10 is also elevated in G2019S carriers, but only those with PD. Additionally, phosphorylation of this substrate is also elevated in two separate idiopathic PD cohorts, but not in carriers of the A53T mutation in α-synuclein. In contrast, Rab29 phosphorylation was specifically reduced in urinary exosomes from A53T and idiopathic PD patients. Taken together, our findings highlight the need for the assessment of multiple complimentary targets for a more comprehensive picture of the disease.

8.
Brain Res ; 1771: 147639, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492263

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease, comprised of both familial and idiopathic forms, behind only Alzheimer's disease (AD). The disease is characterized, regardless of the pathogenesis, primarily by a loss of DA neurons in the ventral midbrain as well as noradrenergic neurons of the locus coeruleus; however, by the time symptoms manifest, considerable neuronal loss in both areas has occurred. Neuroprotective strategies thus have to be paired with more sensitive and specific biomarker assays that can identify early at-risk patients in order to initiate disease-modifying therapies at an earlier stage in the disease. Complicating this is the fact that multiple forms of cell death mediate the neuronal loss; however, with a common underlying element that the cell death is considered a "regulated" form of cell death, in contrast to an un-controlled necrotic cell death process. In this review we focus our discussion on several categories of regulated cell death in the context of PD: apoptosis, necroptosis, pyroptosis, and autophagic cell death. In clinical studies as well as experimental in vivo models of PD, there is evidence for a role of each of these forms of cell death in the loss of midbrain DA neurons, and specific therapeutic strategies have been proposed and tested. What remains unclear however is the relative contributions of these distinct forms of cell death to the overall loss of DA neurons, whether they occur at different stages of the disease, or whether specific sub-regions within the midbrain are more susceptible to specific death triggers and pathways.


Assuntos
Morte Celular , Neurônios/patologia , Doença de Parkinson/patologia , Animais , Neurônios Dopaminérgicos/patologia , Humanos
9.
ACS Chem Biol ; 16(11): 2326-2338, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34496561

RESUMO

Leucine-Rich Repeat Kinase 2 (LRRK2) is a large, multidomain protein with dual kinase and GTPase function that is commonly mutated in both familial and idiopathic Parkinson's Disease (PD). While dimerization of LRRK2 is commonly detected in PD models, it remains unclear whether inhibition of dimerization can regulate catalytic activity and pathogenesis. Here, we show constrained peptides that are cell-penetrant, bind LRRK2, and inhibit LRRK2 activation by downregulating dimerization. We further show that inhibited dimerization decreases kinase activity and inhibits ROS production and PD-linked apoptosis in primary cortical neurons. While many ATP-competitive LRRK2 inhibitors induce toxicity and mislocalization of the protein in cells, these constrained peptides were found to not affect LRRK2 localization. The ability of these peptides to inhibit pathogenic LRRK2 kinase activity suggests that disruption of dimerization may serve as a new allosteric strategy to downregulate PD-related signaling pathways.


Assuntos
Inibidores Enzimáticos/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Doença de Parkinson/enzimologia , Peptídeos/farmacologia , Regulação Alostérica , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Dimerização , Ativação Enzimática , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Neurônios/efeitos dos fármacos , Doença de Parkinson/patologia , Peptídeos/química , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Front Neurosci ; 14: 865, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013290

RESUMO

Evidence is mounting that LRRK2 function, particularly its kinase activity, is elevated in multiple forms of Parkinson's disease, both idiopathic as well as familial forms linked to mutations in the LRRK2 gene. However, sensitive quantitative markers of LRRK2 activation in clinical samples remain at the early stages of development. There are several measures of LRRK2 activity that could potentially be used in longitudinal studies of disease progression, as inclusion/exclusion criteria for clinical trials, to predict response to therapy, or as markers of target engagement. Among these are levels of LRRK2, phosphorylation of LRRK2 itself, either by other kinases or via auto-phosphorylation, its in vitro kinase activity, or phosphorylation of downstream substrates. This is advantageous on many levels, in that multiple indices of elevated kinase activity clearly strengthen the rationale for targeting this kinase with novel therapeutic candidates, and provide alternate markers of activation in certain tissues or biofluids for which specific measures are not detectable. However, this can also complicate interpretation of findings from different studies using disparate measures. In this review we discuss the current state of LRRK2-focused biomarkers, the advantages and disadvantages of the current pallet of outcome measures, the gaps that need to be addressed, and the priorities that the field has defined.

11.
Mov Disord ; 35(11): 2095-2100, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652692

RESUMO

BACKGROUND: Leucine-rich repeat kinase 2 kinase inhibitors are being vigorously pursued as potential therapeutic options; however, there is a critical need for sensitive and quantitative assays of leucine-rich repeat kinase 2 function and target engagement. OBJECTIVES: Our objective was to compare collection and storage protocols for peripheral blood mononuclear cells, and to determine the optimal conditions for downstream analyses of leucine-rich repeat kinase 2 in PD cohorts. METHODS: Here, we describe enzyme-linked immunosorbent assay-based assays capable of detecting multiple aspects of leucine-rich repeat kinase 2 function at endogenous levels in human tissues. RESULTS: In peripheral blood mononuclear cells from both healthy and affected carriers of the G2019S mutation in leucine-rich repeat kinase 2, we report, for the first time, significantly elevated in vitro kinase activity, while detecting a significant increase in pS935/leucine-rich repeat kinase 2 in idiopathic PD patients. CONCLUSIONS: Quantitative assays such as these described here could potentially uncover specific markers of leucine-rich repeat kinase 2 function that are predictive of disease progression, aid in patient stratification, and be a critical component of upcoming clinical trials. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Leucócitos Mononucleares , Doença de Parkinson , Ensaio de Imunoadsorção Enzimática , Humanos , Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética
12.
Biomolecules ; 10(6)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560161

RESUMO

Biomarkers and disease-modifying therapies are both urgent unmet medical needs in the treatment of Parkinson's disease (PD) and must be developed concurrently because of their interdependent relationship: biomarkers for the early detection of disease (i.e., prior to overt neurodegeneration) are necessary in order for patients to receive maximal therapeutic benefit and vice versa; disease-modifying therapies must become available for patients whose potential for disease diagnosis and prognosis can be predicted with biomarkers. This review provides an overview of the milestones achieved to date in the therapeutic strategy development of disease-modifying therapies and biomarkers for PD, with a focus on the most common and advanced genetically linked targets alpha-synuclein (SNCA), leucine-rich repeat kinase-2 (LRRK2) and glucocerebrosidase (GBA1). Furthermore, we discuss the convergence of the different pathways and the importance of patient stratification and how these advances may apply more broadly to idiopathic PD. The heterogeneity of PD poses a challenge for therapeutic and biomarker development, however, the one gene- one target approach has brought us closer than ever before to an unprecedented number of clinical trials and biomarker advancements.


Assuntos
Biomarcadores , Terapia Genética/tendências , Terapia de Alvo Molecular/tendências , Doença de Parkinson/terapia , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Heterogeneidade Genética , Terapia Genética/métodos , História do Século XXI , Humanos , Terapia de Alvo Molecular/métodos , Mutação , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
13.
Cell Res ; 29(4): 313-329, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858560

RESUMO

Missense mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) cause the majority of familial and some sporadic forms of Parkinson's disease (PD). The hyperactivity of LRRK2 kinase induced by the pathogenic mutations underlies neurotoxicity, promoting the development of LRRK2 kinase inhibitors as therapeutics. Many potent and specific small-molecule LRRK2 inhibitors have been reported with promise. However, nearly all inhibitors are ATP competitive-some with unwanted side effects and unclear clinical outcome-alternative types of LRRK2 inhibitors are lacking. Herein we identify 5'-deoxyadenosylcobalamin (AdoCbl), a physiological form of the essential micronutrient vitamin B12 as a mixed-type allosteric inhibitor of LRRK2 kinase activity. Multiple assays show that AdoCbl directly binds LRRK2, leading to the alterations of protein conformation and ATP binding in LRRK2. STD-NMR analysis of a LRRK2 homologous kinase reveals the contact sites in AdoCbl that interface with the kinase domain. Furthermore, we provide evidence that AdoCbl modulates LRRK2 activity through disrupting LRRK2 dimerization. Treatment with AdoCbl inhibits LRRK2 kinase activity in cultured cells and brain tissue, and prevents neurotoxicity in cultured primary rodent neurons as well as in transgenic C. elegans and D. melanogaster expressing LRRK2 disease variants. Finally, AdoCbl alleviates deficits in dopamine release sustainability caused by LRRK2 disease variants in mouse models. Our study uncovers vitamin B12 as a novel class of LRRK2 kinase modulator with a distinct mechanism, which can be harnessed to develop new LRRK2-based PD therapeutics in the future.


Assuntos
Cobamidas/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Vitamina B 12/análogos & derivados , Complexo Vitamínico B/farmacologia , Regulação Alostérica , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Drosophila melanogaster , Reposicionamento de Medicamentos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ratos
14.
Biochem J ; 476(3): 559-579, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30670570

RESUMO

The Parkinson's disease (PD) protein leucine-rich repeat kinase 2 (LRRK2) exists as a mixture of monomeric and dimeric species, with its kinase activity highly concentrated in the dimeric conformation of the enzyme. We have adapted the proximity biotinylation approach to study the formation and activity of LRRK2 dimers isolated from cultured cells. We find that the R1441C and I2020T mutations both enhance the rate of dimer formation, whereas, the G2019S kinase domain mutant is similar to WT, and the G2385R risk factor variant de-stabilizes dimers. Interestingly, we find a marked departure in the kinase activity between G2019S-LRRK2 homo-dimers and wild-type-G2019S hetero-dimers. While the homo-dimeric G2019S-LRRK2 exhibits the typical robust enhancement of kinase activity, hetero-dimers comprised of wild-type (WT) and G2019S-LRRK2 exhibit kinase activity similar to WT. Dimeric complexes of specific mutant forms of LRRK2 show reduced stability following an in vitro kinase reaction, in LRRK2 mutants for which the kinase activity is similar to WT. Phosphorylation of the small GTPase Rab10 follows a similar pattern in which hetero-dimers of WT and mutant LRRK2 show similar levels of phosphorylation of Rab10 to WT homo-dimers; while the levels of pRab10 are significantly increased in cells expressing mutant homo-dimers. Interestingly, while the risk variant G2385R leads to a de-stabilization of LRRK2 dimers, those dimers possess significantly elevated kinase activity. The vast majority of familial LRRK2-dependent PD cases are heterozygous; thus, these findings raise the possibility that a crucial factor in disease pathogenesis may be the accumulation of homo-dimeric mutant LRRK2.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação de Sentido Incorreto , Doença de Parkinson/enzimologia , Multimerização Proteica , Substituição de Aminoácidos , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fosforilação/genética , Estrutura Quaternária de Proteína , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
15.
Int J Mol Sci ; 19(9)2018 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-30223621

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a large protein of unclear function. Rare mutations in the LRRK2 gene cause familial Parkinson's disease (PD) and inflammatory bowel disease. Genome-wide association studies (GWAS) have revealed significant association of the abovementioned diseases at the LRRK2 locus. Cell and systems biology research has led to potential roles that LRRK2 may have in PD pathogenesis, especially the kinase domain (KIN). Previous human expression studies showed evidence of mRNA expression and splicing patterns that may contribute to our understanding of the function of LRRK2. In this work, we investigate and identified significant regional differences in LRRK2 expression at the mRNA level, including a number of splicing events in the Ras of complex protein (Roc) and C-terminal of Roc domain (COR) of LRRK2, in the substantia nigra (SN) and occipital cortex (OCTX). Our findings indicate that the predominant form of LRRK2 mRNA is full length, with shorter isoforms present at a lower copy number. Our molecular modelling study suggests that splicing events in the ROC/COR domains will have major consequences on the enzymatic function and dimer formation of LRRK2. The implications of these are highly relevant to the broader effort to understand the biology and physiological functions of LRRK2, and to better characterize the role(s) of LRRK2 in the underlying mechanism leading to PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Splicing de RNA , Expressão Gênica , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Modelos Moleculares , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , Relação Estrutura-Atividade , Substância Negra/metabolismo
16.
Biochem J ; 475(7): 1271-1293, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29519959

RESUMO

Autosomal-dominant, missense mutations in the leucine-rich repeat protein kinase 2 (LRRK2) gene are the most common genetic predisposition to develop Parkinson's disease (PD). LRRK2 kinase activity is increased in several pathogenic mutations (N1437H, R1441C/G/H, Y1699C, G2019S), implicating hyperphosphorylation of a substrate in the pathogenesis of the disease. Identification of the downstream targets of LRRK2 is a crucial endeavor in the field to understand LRRK2 pathway dysfunction in the disease. We have identified the signaling adapter protein p62/SQSTM1 as a novel endogenous interacting partner and a substrate of LRRK2. Using mass spectrometry and phospho-specific antibodies, we found that LRRK2 phosphorylates p62 on Thr138 in vitro and in cells. We found that the pathogenic LRRK2 PD-associated mutations (N1437H, R1441C/G/H, Y1699C, G2019S) increase phosphorylation of p62 similar to previously reported substrate Rab proteins. Notably, we found that the pathogenic I2020T mutation and the risk factor mutation G2385R displayed decreased phosphorylation of p62. p62 phosphorylation by LRRK2 is blocked by treatment with selective LRRK2 inhibitors in cells. We also found that the amino-terminus of LRRK2 is crucial for optimal phosphorylation of Rab7L1 and p62 in cells. LRRK2 phosphorylation of Thr138 is dependent on a p62 functional ubiquitin-binding domain at its carboxy-terminus. Co-expression of p62 with LRRK2 G2019S increases the neurotoxicity of this mutation in a manner dependent on Thr138. p62 is an additional novel substrate of LRRK2 that regulates its toxic biology, reveals novel signaling nodes and can be used as a pharmacodynamic marker for LRRK2 kinase activity.


Assuntos
Embrião de Mamíferos/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Neurônios/patologia , Proteína Sequestossoma-1/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/metabolismo , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Neurônios/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Proteína Sequestossoma-1/genética
17.
Sci Rep ; 8(1): 3455, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472595

RESUMO

In experimental models, both in vivo and cellular, over-expression of Parkinson's linked mutant leucine-rich repeat kinase 2 (LRRK2) is sufficient to induce neuronal death. While several cell death associated proteins have been linked to LRRK2, either as protein interactors or as putative substrates, characterization of the neuronal death cascade remains elusive. In this study, we have mapped for the first time the domain within LRRK2 that mediates the interaction with FADD, thereby activating the molecular machinery of the extrinsic death pathway. Using homology modeling and molecular docking approaches, we have identified a critical motif within the N-terminal armadillo repeat region of LRRK2. Moreover, we show that co-expression of fragments of LRRK2 that contain the FADD binding motif, or deletion of this motif itself, blocks the interaction with FADD, and is neuroprotective. We further demonstrate that downstream of FADD, the mitochondrial proteins Bid and Bax are recruited to the death cascade and are necessary for neuronal death. Our work identifies multiple novel points within neuronal death signaling pathways that could potentially be targeted by candidate therapeutic strategies and highlight how the extrinsic pathway can be activated intracellularly in a pathogenic context.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Animais , Proteínas do Domínio Armadillo/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Morte Celular , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Simulação de Acoplamento Molecular , Neurônios/citologia , Cultura Primária de Células , Domínios e Motivos de Interação entre Proteínas/genética , Mapeamento de Interação de Proteínas , Ratos , Sequências Repetitivas de Aminoácidos , Transdução de Sinais , Proteína X Associada a bcl-2/metabolismo
18.
Adv Neurobiol ; 14: 193-208, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28353285

RESUMO

Since its cloning and identification in 2004, considerable gains have been made in the understanding of the basic functionality of leucine-rich repeat kinase 2 (LRRK2), including its kinase and GTPase activities, its protein interactors and subcellular localization, and its expression in the CNS and peripheral tissues. However, the mechanism(s) by which expression of mutant forms of LRRK2 lead to the death of dopaminergic neurons of the ventral midbrain remains largely uncharacterized. Because of its complex domain structure, LRRK2 exhibits similarities with multiple protein families including ROCO proteins, as well as the RIP kinases. Cellular models in which mutant LRRK2 is overexpressed in neuronal-like cell lines or in primary neurons have found evidence of apoptotic cell death involving components of the extrinsic as well as intrinsic death pathways. However, since the expression of LRRK2 is comparatively quite low in ventral midbrain dopaminergic neurons, the possibility exists that non-cell autonomous signaling also contributes to the loss of these neurons. In this chapter, we will discuss the different neuronal death pathways that may be activated by mutant forms of LRRK2, guided in part by the behavior of other members of the RIP kinase protein family.


Assuntos
Apoptose/fisiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Mutação
19.
Proc Natl Acad Sci U S A ; 114(15): 3999-4004, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348207

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra and the gradual depletion of dopamine (DA). Current treatments replenish the DA deficit and improve symptoms but induce dyskinesias over time, and neuroprotective therapies are nonexistent. Here we report that Nuclear receptor-related 1 (Nurr1):Retinoid X receptor α (RXRα) activation has a double therapeutic potential for PD, offering both neuroprotective and symptomatic improvement. We designed BRF110, a unique in vivo active Nurr1:RXRα-selective lead molecule, which prevents DAergic neuron demise and striatal DAergic denervation in vivo against PD-causing toxins in a Nurr1-dependent manner. BRF110 also protects against PD-related genetic mutations in patient induced pluripotent stem cell (iPSC)-derived DAergic neurons and a genetic mouse PD model. Remarkably, besides neuroprotection, BRF110 up-regulates tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase (AADC), and GTP cyclohydrolase I (GCH1) transcription; increases striatal DA in vivo; and has symptomatic efficacy in two postneurodegeneration PD models, without inducing dyskinesias on chronic daily treatment. The combined neuroprotective and symptomatic effects of BRF110 identify Nurr1:RXRα activation as a potential monotherapeutic approach for PD.


Assuntos
Antiparkinsonianos/farmacologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Doença de Parkinson/tratamento farmacológico , Receptor X Retinoide alfa/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Antiparkinsonianos/química , Antiparkinsonianos/farmacocinética , Encéfalo/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Dopamina/genética , Estabilidade de Medicamentos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/agonistas , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Multimerização Proteica , Ratos , Receptor X Retinoide alfa/agonistas , Receptor X Retinoide alfa/química , Receptor X Retinoide alfa/genética
20.
Biochem Soc Trans ; 45(1): 123-129, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28202665

RESUMO

Autosomal dominantly inherited mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease. While considerable progress has been made in understanding its function and the many different cellular activities in which it participates, a clear understanding of the mechanism(s) of the induction of neuronal death by mutant forms of LRRK2 remains elusive. Although several in vivo models have documented the progressive loss of dopaminergic neurons of the substantia nigra, more complete interrogations of the modality of neuronal death have been gained from cellular models. Overexpression of mutant LRRK2 in neuronal-like cell lines or in primary neurons induces an apoptotic type of cell death involving components of the extrinsic as well as intrinsic death pathways. While informative, these studies are limited by their reliance upon isolated neuronal cells; and the pathways triggered by mutant LRRK2 in neurons may be further refined or modulated by extracellular signals. Nevertheless, the identification of specific cell death-associated signaling events set in motion by the dominant action of mutant LRRK2, the loss of an inhibitory function of wild-type LRRK2, or a combination of the two, expands the landscape of potential therapeutic targets for future intervention in the clinic.


Assuntos
Apoptose/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Neurônios/metabolismo , Transdução de Sinais , Animais , Caspases/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Modelos Biológicos , Neurônios/citologia , Doença de Parkinson/enzimologia , Doença de Parkinson/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...