Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1991, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790289

RESUMO

A potentially irreversible threshold in Antarctic ice shelf melting would be crossed if the ocean cavity beneath the large Filchner-Ronne Ice Shelf were to become flooded with warm water from the deep ocean. Previous studies have identified this possibility, but there is great uncertainty as to how easily it could occur. Here, we show, using a coupled ice sheet-ocean model forced by climate change scenarios, that any increase in ice shelf melting is likely to be preceded by an extended period of reduced melting. Climate change weakens the circulation beneath the ice shelf, leading to colder water and reduced melting. Warm water begins to intrude into the cavity when global mean surface temperatures rise by approximately 7 °C above pre-industrial, which is unlikely to occur this century. However, this result should not be considered evidence that the region is unconditionally stable. Unless global temperatures plateau, increased melting will eventually prevail.

2.
Philos Trans A Math Phys Eng Sci ; 373(2045)2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26032316

RESUMO

Recent CMIP5 models predict large losses of summer Arctic sea ice, with only mitigation scenarios showing sustainable summer ice. Sea ice is inherently part of the climate system, and heat fluxes affecting sea ice can be small residuals of much larger air-sea fluxes. We discuss analysis of energy budgets in the Met Office climate models which point to the importance of early summer processes (such as clouds and meltponds) in determining both the seasonal cycle and the trend in ice decline. We give examples from Met Office modelling systems to illustrate how the seamless use of models for forecasting on time scales from short range to decadal might help to unlock the drivers of high latitude biases in climate models.

3.
Philos Trans A Math Phys Eng Sci ; 372(2019): 20130047, 2014 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-24891389

RESUMO

The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...