Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915652

RESUMO

Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes. Studying this phenomenon in high-throughput is challenging since extracellular reduction cannot easily be traced back to its cell of origin within a mixed population. Here, we describe the development of a microdroplet emulsion system to enrich EET-capable organisms. We validated our system using the model electroactive organism S. oneidensis and describe the tooling of a benchtop microfluidic system for oxygen-limited processes. We demonstrated enrichment of EET-capable phenotypes from a mixed wild-type and EET-knockout population. As a proof-of-concept application, bacteria were collected from iron sedimentation from Town Lake (Austin, TX) and subjected to microdroplet enrichment. We observed an increase in EET-capable organisms in the sorted population that was distinct when compared to a population enriched in a bulk culture more closely akin to traditional techniques for discovering EET-capable bacteria. Finally, two bacterial species, C. sakazakii and V. fessus not previously shown to be electroactive, were further cultured and characterized for their ability to reduce channel conductance in an organic electrochemical transistor (OECT) and to reduce soluble Fe(III). We characterized two bacterial species not previously shown to exhibit electrogenic behavior. Our results demonstrate the utility of a microdroplet emulsions for identifying putative EET-capable bacteria and how this technology can be leveraged in tandem with existing methods.

2.
Sci Rep ; 14(1): 8798, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627476

RESUMO

Despite increasing efforts across various disciplines, the fate, transport, and impact of synthetic plastics on the environment and public health remain poorly understood. To better elucidate the microbial ecology of plastic waste and its potential for biotransformation, we conducted a large-scale analysis of all publicly available meta-omic studies investigating plastics (n = 27) in the environment. Notably, we observed low prevalence of known plastic degraders throughout most environments, except for substantial enrichment in riverine systems. This indicates rivers may be a highly promising environment for discovery of novel plastic bioremediation products. Ocean samples associated with degrading plastics showed clear differentiation from non-degrading polymers, showing enrichment of novel putative biodegrading taxa in the degraded samples. Regarding plastisphere pathogenicity, we observed significant enrichment of antimicrobial resistance genes on plastics but not of virulence factors. Additionally, we report a co-occurrence network analysis of 10 + million proteins associated with the plastisphere. This analysis revealed a localized sub-region enriched with known and putative plastizymes-these may be useful for deeper investigation of nature's ability to biodegrade man-made plastics. Finally, the combined data from our meta-analysis was used to construct a publicly available database, the Plastics Meta-omic Database (PMDB)-accessible at plasticmdb.org. These data should aid in the integrated exploration of the microbial plastisphere and facilitate research efforts investigating the fate and bioremediation potential of environmental plastic waste.


Assuntos
Multiômica , Plásticos , Humanos , Polímeros , Biotransformação , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...