Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 37(6): e9454, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36477973

RESUMO

RATIONALE: Back-side thinning of wafers is used to eliminate issues with transient sputtering when analyzing near-surface element distributions. Precise and accurate calibrated implants are created by including a standard reference material during the implantation. Combining these methods allows accurate analysis of low-fluence, shallow features even if matrix effects are a concern. METHODS: Implanted Na (<2.0 × 1011 ions/cm2 , peaking <50 nm) in diamond-like carbon (DLC) film on silicon (solar wind returned by NASA's Genesis mission) was prepared for measurement as follows. Implanted surfaces of samples were epoxied to wafers and back-side-thinned using physical or chemical methods. Thinned samples were then implanted with reference ions for accurate quantification of the solar wind implant. Analyses used a CAMECA IMS 7f-GEO SIMS in depth-profiling mode. RESULTS: Back-side-implanted reference ions reduced the need to change sample mounts or stage position and could be spatially separated from the solar wind implant even when measuring monoisotopic ions. Matrix effects in DLC were mitigated and the need to find an identical piece of DLC for a reference implant was eliminated. Accuracy was only limited by the back-side technique itself. CONCLUSIONS: Combining back-side depth profiling with back-side-implanted internal standards aides quantification of shallow mono- and polyisotopic implants. This technique helps mitigate matrix effects and keeps measurement conditions consistent. Depth profile acquisition times are longer, but if sample matrices are homogeneous, procedural changes can decrease measurement times.

2.
Astrophys J ; 907(1)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34381248

RESUMO

We present elemental abundance data of C, N, O, Na, Mg, Al, Ca, and Cr in Genesis silicon targets. For Na, Mg, Al, and Ca, data from three different SW regimes are also presented. Data were obtained by backside depth profiling using Secondary Ion Mass Spectrometry. The accuracy of these measurements exceeds those obtained by in-situ observations; therefore the Genesis data provide new insights into elemental fractionation between Sun and solar wind, including differences between solar wind regimes. We integrate previously published noble gas and hydrogen elemental abundances from Genesis targets, as well as preliminary values for K and Fe. The abundances of the solar wind elements measured display the well-known fractionation pattern that correlates with each elements' First Ionization Potential (FIP). When normalized either to spectroscopic photospheric solar abundances or to those derived from CI-chondritic meteorites, the fractionation factors of low-FIP elements (K, Na, Al, Ca, Cr, Mg, Fe) are essentially identical within uncertainties, but the data are equally consistent with an increasing fractionation with decreasing FIP. The elements with higher FIPs between ~11 and ~16 eV (C, N, O, H, Ar, Kr, Xe) display a relatively well-defined trend of increasing fractionation with decreasing FIP, if normalized to modern 3D photospheric model abundances. Among the three Genesis regimes, the Fast SW displays the least elemental fractionation for almost all elements (including the noble gases) but differences are modest: for low-FIP elements the precisely measured Fast-Slow SW variations are less than 3%.

3.
J Mater Sci ; 52(19): 11282-11305, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32025048

RESUMO

An amorphous diamond-like carbon film deposited on silicon made at Sandia National Laboratory by pulsed laser deposition was one of several solar wind (SW) collectors used by the Genesis Mission (NASA Discovery Class Mission #5). The film was ~1 µm thick, amorphous, anhydrous, and had a high ratio of sp 3-sp 2 bonds (>50%). For 27 months of exposure to space at the first Lagrange point, the collectors were passively irradiated with SW (H fluence ~2 × 1016 ions cm-2; He fluence ~8 × 1014 ions cm-2). The radiation damage caused by the implanted H ions peaked at 12-14 nm below the surface of the film and that of He about 20-23 nm. To enable quantitative measurement of the SW fluences by secondary ion mass spectroscopy, minor isotopes of Mg (25Mg and 26Mg) were commercially implanted into flight-spare collectors at 75 keV and a fluence of 1 × 1014 ions cm-2. The shapes of analytical depth profiles, the rate at which the profiles were sputtered by a given beam current, and the intensity of ion yields are used to characterize the structure of the material in small areas (~200 × 200 ± 50 µm). Data were consistent with the hypothesis that minor structural changes in the film were induced by SW exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...