Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 311: 114822, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35255324

RESUMO

Energy and environmental challenges are global concerns that scientists are interested in alleviating. It is on this premise that we prepared boron/nitrogen graphene-coated Cu0/TiO2 (B/N-graphene-coated Cu/TiO2) photocatalyst of varying B:N ratios with dual functionality of H2 production and 2-Chlorophenol (2-CP) degradation. In-situ coating of Cu0 with B/N-graphene is achieved via solvothermal synthesis and calcination under an inert atmosphere. All B/N-graphene-coated Cu/TiO2 exhibit higher photonic efficiencies (5.68%-7.06% at 300 < λ < 400 nm) towards H2 production than bare TiO2 (0.25% at 300 < λ < 400 nm). Varying the B:N ratio in graphene influences the efficiency of H2 generation. A B:N ratio of 0.08 yields the most active composite exhibiting a photonic efficiency of 7.06% towards H2 evolution and a degradation rate of 4.07 × 10-2 min-1 towards 2-chlorophenol (2-CP). Density functional theory (DFT) investigations determine that B-doping (p-type) enhances graphene stability on Cu0 while N-doping (n-type) increases the reduction potential of Cu0 relative to H+ reduction potential. X-ray photoelectron spectroscopy reveals that increasing the B:N ratio increases p-type BC2O while decreasing n-type pyridinic-N in graphene thus altering the interlayer electron density. Isotopic labelling experiments determine water reduction as the main mechanism by which H2 is produced over B/N-graphene-coated Cu/TiO2. The reactive species involved in the degradation of 2-CP are holes (h+), hydroxyl radical (OH•), and O2•-, of which superoxide (O2•-) plays the major role. This work displays B/N -graphene-coated Cu/TiO2 as a potential photocatalyst for large-scale H2 production and 2-CP degradation.

2.
ChemCatChem ; 12(1): 273-280, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-32064007

RESUMO

The reaction of methanol to light olefins and water (MTO) was studied in a fixed bed tubular membrane reactor using commercial SAPO-34 catalyst. In the fixed bed reactor without membrane support, the MTO reaction collapsed after 3 h time on stream. However, if the reaction by-product steam is in situ extracted from the reactor through a hydrophilic tubular LTA membrane, the reactor produces long-term stable about 60 % ethene and 10 % propene. It is shown that the reason for the superior performance of the membrane-assisted reactor is not the prevention of catalyst damage caused by steam but the influence of the water removal on the formation of different carbonaceous residues inside the SAPO-34 cages. Catalytically beneficial methylated 1 or 2 ring aromatics have been found in a higher percentage in the MTO reaction with a water removal membrane compared to the MTO reaction without membrane support.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...