Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ind Eng Chem Res ; 62(46): 20006-20016, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38037620

RESUMO

The distribution of catalytically active species in heterogeneous porous catalysts strongly influences their performance and durability in industrial reactors. A drying model for investigating this redistribution was developed and implemented using the finite volume method. This model embeds an analytical approach regarding the permeability and capillary pressure from arbitrary pore size distributions. Subsequently, a set of varying pore size distributions are investigated, and their impact on the species redistribution during drying is quantified. It was found that small amounts of large pores speed up the drying process and reduce internal pressure build up significantly while having a negligible impact on the final distribution of the catalytically active species. By further increasing the amount of large pores, the accumulation of species at the drying surface is facilitated.

2.
Ind Eng Chem Res ; 62(45): 18960-18972, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020786

RESUMO

Riser reactors are frequently applied in catalytic processes involving rapid catalyst deactivation. Typically heterogeneous flow structures prevail because of the clustering of particles, which impacts the quality of the gas-solid contact. This phenomenon results as a competition between fluid-particle interaction (i.e., drag) and particle-particle interaction (i.e., collisions). In this study, five drag force correlations were used in a combined computational fluid dynamics-discrete element method Immersed Boundary Model to predict the clustering. The simulation results were compared with experimental data obtained from a pseudo-2D riser in the fast fluidization regime. The clusters were detected on the basis of a core-wake approach using constant thresholds. Although good predictions for the global (solids volume fraction and mass flux) variables and cluster (spatial distribution, size, and number of clusters) variables were obtained with two of the approaches in most of the simulations, all the correlations show significant deviations in the onset of a pneumatic transport regime. However, the correlations of Felice (Int. J. Multiphase Flow1994, 20, 153-159) and Tang et al. [AIChE J.2015, 61 ( (2), ), 688-698] show the closest correspondence for the time-averaged quantities and the clustering behavior in the fast fluidization regime.

3.
Nat Food ; 2(6): 434-441, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37118233

RESUMO

Improving photosynthesis and light capture increases crop yield and paves a sustainable way to meet the growing global food demand. Here we introduce a spectral-shifting microphotonic thin film as a greenhouse envelope that can be scalably manufactured for augmented photosynthesis. By breaking the intrinsic propagation symmetry of light, the photonic microstructures can extract 89% of the internally generated light and deliver most of that in one direction towards photosynthetic organisms. The microphotonic film augments lettuce production by more than 20% in both indoor facilities with electric lighting and in a greenhouse with natural sunlight, offering the possibility of increasing crop production efficiency in controlled environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...