Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0302243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39046960

RESUMO

The sequestration of Plasmodium falciparum-infected erythrocytes to the host endothelium is central to the pathogenesis of malaria. The sequestration is mediated by the parasite´s diverse Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variants, which bind select human receptors on the endothelium. Severe malaria is associated with PfEMP1 binding human endothelial protein C receptor (EPCR) via their CIDRα1 domains. Antibodies binding and inhibiting across the sequence diverse CIDRα1 domains are likely important in acquired immunity against severe malaria. In this study, we explored if immunization with AP205 bacteriophage capsid-virus-like particles (cVLPs) presenting a mosaic of diverse CIDRα1 protein variants would stimulate broadly reactive and inhibitory antibody responses in mice. Three different mosaic cVLP vaccines each composed of five CIDRα1 protein variants with varying degrees of sequence conservation of residues at and near the EPCR binding site, were tested. All mosaic cVLP vaccines induced functional antibodies comparable to those induced by matched cocktails of cVLPs decorated with the single CIDRα1 variant. No broadly reactive responses were observed. However, the vaccines did induce some cross-reactivity and inhibition within the CIDRα1 subclasses included in the vaccines, demonstrating potential use of the cVLP vaccine platform for the design of multivalent vaccines.


Assuntos
Receptor de Proteína C Endotelial , Proteínas de Protozoários , Vacinas de Partículas Semelhantes a Vírus , Animais , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Camundongos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Humanos , Receptor de Proteína C Endotelial/imunologia , Receptor de Proteína C Endotelial/metabolismo , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Plasmodium falciparum/imunologia , Anticorpos Antiprotozoários/imunologia , Feminino , Domínios Proteicos , Ligação Proteica , Camundongos Endogâmicos BALB C , Receptores de Superfície Celular/imunologia , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Malária Falciparum/parasitologia
2.
Front Immunol ; 12: 752168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819933

RESUMO

Modification of surface antigens and differential expression of virulence factors are frequent strategies pathogens adopt to escape the host immune system. These escape mechanisms make pathogens a "moving target" for our immune system and represent a challenge for the development of vaccines, which require more than one antigen to be efficacious. Therefore, the availability of strategies, which simplify vaccine design, is highly desirable. Bacterial Outer Membrane Vesicles (OMVs) are a promising vaccine platform for their built-in adjuvanticity, ease of purification and flexibility to be engineered with foreign proteins. However, data on if and how OMVs can be engineered with multiple antigens is limited. In this work, we report a multi-antigen expression strategy based on the co-expression of two chimeras, each constituted by head-to-tail fusions of immunogenic proteins, in the same OMV-producing strain. We tested the strategy to develop a vaccine against Staphylococcus aureus, a Gram-positive human pathogen responsible for a large number of community and hospital-acquired diseases. Here we describe an OMV-based vaccine in which four S. aureus virulent factors, ClfAY338A, LukE, SpAKKAA and HlaH35L have been co-expressed in the same OMVs (CLSH-OMVsΔ60). The vaccine elicited antigen-specific antibodies with functional activity, as judged by their capacity to promote opsonophagocytosis and to inhibit Hla-mediated hemolysis, LukED-mediated leukocyte killing, and ClfA-mediated S. aureus binding to fibrinogen. Mice vaccinated with CLSH-OMVsΔ60 were robustly protected from S. aureus challenge in the skin, sepsis and kidney abscess models. This study not only describes a generalized approach to develop easy-to-produce and inexpensive multi-component vaccines, but also proposes a new tetravalent vaccine candidate ready to move to development.


Assuntos
Antígenos de Bactérias/imunologia , Membrana Externa Bacteriana , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Staphylococcus aureus/imunologia , Vacinas Combinadas/administração & dosagem , Fatores de Virulência/imunologia , Animais , Anticorpos Antibacterianos/sangue , Feminino , Células HL-60 , Humanos , Camundongos , Infecções Estafilocócicas/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...