Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 34(3): 895-908, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31719679

RESUMO

Acute graft-versus-host disease (aGvHD) is a frequent complication after allogeneic bone marrow/stem cell transplantation (BMT/SCT) induced by co-transplanted alloreactive conventional donor T cells. We previously demonstrated that the adoptive transfer of donor CD4+CD25+Foxp3+ regulatory T cells (Treg) at the time of BMT prevents aGvHD in murine models. Yet, the therapeutic potential of donor Treg for the treatment of established aGvHD has not yet been studied in detail. We now used in vitro expanded phenotypically and functionally stable murine Treg to explore their therapeutic efficacy in haploidentical aGvHD models. Upon transfer donor Treg ameliorate clinical and histologic signs of aGvHD and significantly improve survival. They migrate to lymphoid as well as aGvHD target organs, predominantly the gastrointestinal tract, where they inhibit the proliferation of conventional T cells, reduce the influx of myeloid cells, and the accumulation of inflammatory cytokines. Successfully treated animals restore aGvHD-induced tissue damage in target organs and lymphoid tissues, thereby supporting lymphocyte reconstitution. The therapeutically applied Treg population survives long term without conversion into pathogenic effector T cells. These results demonstrate that donor Treg not only prevent aGvHD, but are also efficacious for the treatment of this life-threatening BMT complication.


Assuntos
Doença Enxerto-Hospedeiro/terapia , Linfócitos T Reguladores/imunologia , Animais , Células da Medula Óssea/citologia , Transplante de Medula Óssea/efeitos adversos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Sistema Imunitário , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Mieloides/patologia , Fenótipo , Transplante Homólogo/efeitos adversos
2.
JCI Insight ; 3(11)2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875316

RESUMO

Foxp3-positive regulatory T cells (Tregs) are crucial for the maintenance of immune homeostasis and keep immune responses in check. Upon activation, Tregs are transferred into an effector state expressing transcripts essential for their suppressive activity, migration, and survival. However, it is not completely understood how different intrinsic and environmental factors control differentiation. Here, we present for the first time to our knowledge data suggesting that Treg-intrinsic expression of CD83 is essential for Treg differentiation upon activation. Interestingly, mice with Treg-intrinsic CD83 deficiency are characterized by a proinflammatory phenotype. Furthermore, the loss of CD83 expression by Tregs leads to the downregulation of Treg-specific differentiation markers and the induction of an inflammatory profile. In addition, Treg-specific conditional knockout mice showed aggravated autoimmunity and an impaired resolution of inflammation. Altogether, our results show that CD83 expression in Tregs is an essential factor for the development and function of effector Tregs upon activation. Since Tregs play a crucial role in the maintenance of immune tolerance and thus prevention of autoimmune disorders, our findings are also clinically relevant.


Assuntos
Antígenos CD/imunologia , Autoimunidade , Diferenciação Celular/imunologia , Imunoglobulinas/imunologia , Glicoproteínas de Membrana/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Feminino , Tolerância Imunológica , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Ativação Linfocitária , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Linfócitos T Reguladores/metabolismo , Antígeno CD83
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...