Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Dev Comp Immunol ; 54(1): 137-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26400836

RESUMO

Adaptive immunity in vertebrates can confer increased resistance against invading pathogens upon re-infection. But how specific parasite genotypes affect the temporal transition from innate to adaptive immunity under continual exposure to parasites is poorly understood. Here, we investigated the effects of homologous and heterologous exposures of genetically distinct parasite lineages of the eye fluke Diplostomum pseudospathaceum on gene expression patterns of adaptive immunity in sticklebacks (Gasterosteus aculeatus). Observable differences in gene expression were largely attributable to final exposures while there was no transcription pattern characteristic for a general response to repeated infections with D. pseudospathaceum. None of the final exposure treatments was able to erase the distinct expression patterns resulting from a heterologous pre-exposed fish. Interestingly, heterologous final exposures showed similarities between different treatment groups subjected to homologous pre-exposure. The observed pattern was supported by parasite infection rates and suggests that host immunization was optimized towards an adaptive immune response that favored effectiveness against parasite diversity over specificity.


Assuntos
Imunidade Adaptativa/imunologia , Doenças dos Peixes/imunologia , Smegmamorpha/imunologia , Smegmamorpha/parasitologia , Infecções por Trematódeos/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Genótipo , Interações Hospedeiro-Parasita/imunologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Transcriptoma , Trematódeos/genética , Infecções por Trematódeos/genética
2.
PLoS One ; 9(9): e108001, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25254967

RESUMO

Vertebrate innate immunity is the first line of defense against an invading pathogen and has long been assumed to be largely unspecific with respect to parasite/pathogen species. However, recent phenotypic evidence suggests that immunogenetic variation, i.e. allelic variability in genes associated with the immune system, results in host-parasite genotype-by-genotype interactions and thus specific innate immune responses. Immunogenetic variation is common in all vertebrate taxa and this reflects an effective immunological function in complex environments. However, the underlying variability in host gene expression patterns as response of innate immunity to within-species genetic diversity of macroparasites in vertebrates is unknown. We hypothesized that intra-specific variation among parasite genotypes must be reflected in host gene expression patterns. Here we used high-throughput RNA-sequencing to examine the effect of parasite genotypes on gene expression patterns of a vertebrate host, the three-spined stickleback (Gasterosteus aculeatus). By infecting naïve fish with distinct trematode genotypes of the species Diplostomum pseudospathaceum we show that gene activity of innate immunity in three-spined sticklebacks depended on the identity of an infecting macroparasite genotype. In addition to a suite of genes indicative for a general response against the trematode we also find parasite-strain specific gene expression, in particular in the complement system genes, despite similar infection rates of single clone treatments. The observed discrepancy between infection rates and gene expression indicates the presence of alternative pathways which execute similar functions. This suggests that the innate immune system can induce redundant responses specific to parasite genotypes.


Assuntos
Regulação da Expressão Gênica/imunologia , Genótipo , Interações Hospedeiro-Parasita , Imunidade Inata/genética , Smegmamorpha/parasitologia , Transcriptoma/imunologia , Trematódeos/fisiologia , Animais , Ontologia Genética , Genômica , Larva/fisiologia , Carga Parasitária , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Smegmamorpha/imunologia , Trematódeos/genética
3.
Fish Shellfish Immunol ; 36(1): 130-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24176687

RESUMO

Helminth parasites of teleost fish have evolved strategies to evade and manipulate the immune responses of their hosts. Responsiveness of fish host immunity to helminth antigens may therefore vary depending on the degree of host-parasite counter-adaptation. Generalist parasites, infective for a number of host species, might be unable to adapt optimally to the immune system of a certain host species, while specialist parasites might display high levels of adaptation to a particular host species. The degree of adaptations may further differ between sympatric and allopatric host-parasite combinations. Here, we test these hypotheses by in vitro exposure of head kidney leukocytes from three-spined sticklebacks (Gasterosteus aculeatus) to antigens from parasites with a broad fish host range (Diplostomum pseudospathaceum, Triaenophorus nodulosus), a specific fish parasite of cyprinids (Ligula intestinalis) and parasites highly specific only to a single fish species as second intermediate host (Schistocephalus pungitii, which does not infect G. aculeatus, and Schistocephalus solidus, infecting G. aculeatus). In vitro responses of stickleback leukocytes to S. solidus antigens from six European populations, with S. solidus prevalence from <1% to 66% were tested in a fully crossed experimental design. Leukocyte cultures were analysed by means of flow cytometry and a chemiluminescence assay to quantify respiratory burst activity. We detected decreasing magnitudes of in vitro responses to antigens from generalist to specialist parasites and among specialists, from parasites that do not infect G. aculeatus to a G. aculeatus-infecting species. Generalist parasites seem to maintain their ability to infect different host species at the costs of relatively higher immunogenicity compared to specialist parasites. In a comparison of sympatric and allopatric combinations of stickleback leukocytes and antigens from S. solidus, magnitudes of in vitro responses were dependent on the prevalence of the parasite in the population of origin, rather than on sympatry. Antigens from Norwegian (prevalence 30-50%) and Spanish (40-66%) S. solidus induced generally higher in vitro responses compared to S. solidus from two German (<1%) populations. Likewise, leukocytes from stickleback populations with a high S. solidus prevalence showed higher in vitro responses to S. solidus antigens compared to populations with low S. solidus prevalence. This suggests a rather low degree of local adaptation in S. solidus populations, which might be due to high gene flow among populations because of their extremely mobile final hosts, fish-eating birds.


Assuntos
Doenças dos Peixes/parasitologia , Smegmamorpha , Trematódeos/imunologia , Infecções por Trematódeos/veterinária , Animais , Doenças dos Peixes/imunologia , Citometria de Fluxo , Interações Hospedeiro-Parasita/imunologia , Neutrófilos , Explosão Respiratória/imunologia , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/parasitologia
4.
Int J Parasitol ; 43(6): 485-91, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23416153

RESUMO

Many parasitic helminths exhibit mixed mating systems, and switches between self-fertilization and outcrossing may be influenced by environmental conditions and parasite demography. While inbreeding depression selects against the development of purely self-fertilizing populations, genetic compatibility may contribute to stabilizing mixed strategies. Here we study the effects of inbreeding and genetic compatibility on offspring fitness in the digenean trematode Diplostomum pseudospathaceum, a parasite with a three-host life cycle. Hatching rates and infection success in two intermediate hosts, the freshwater snail Lymnaea stagnalis and the three-spined stickleback, Gasterosteus aculeatus, were used as proxies for parasite fitness. Single trematode clones and combinations of two and three different clones were allowed to reproduce sexually using naïve herring gulls (Larus argentatus) as definitive hosts. The hatched larvae were used to assess the proportion of selfed and outcrossed miracidia by means of microsatellite genotyping. These results were matched with hatching rates and infection success of inbred and outcrossed trematodes in both intermediate hosts. Inbreeding effects were obscured by differences in clone performance. In addition, clones outcrossed to a lesser extent than expected in some experimental pairings, indicating the importance of genetic compatibility.


Assuntos
Cruzamentos Genéticos , Trematódeos/fisiologia , Animais , Fertilidade , Genótipo , Lymnaea/parasitologia , Repetições de Microssatélites , Smegmamorpha/parasitologia , Trematódeos/classificação , Trematódeos/genética , Trematódeos/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...